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ABSTRACT  

In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for 

solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform 

is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform 

homotopy perturbation method (FTHPM) to solve the partial differential equations. The closed form 

solutions obtained from the series solution of recursive sequence forms are obtained. We show that the 

solutions to the non-homogeneous partial differential equations are valid for the entire range of problem 

domain. However the validity of the solutions using the previous semi-analytical methods in the entire range 

of problem domain fails to exist. This is the deficiency of the previous HPMs caused by unsatisfied boundary 

conditions that is overcome by the new method, the Fourier transform homotopy perturbation method. 

Moreover, it is shown that solutions approach very rapidly to the exact solutions of the partial differential 

equations. The effectiveness of the new method for three non-homogenous differential equations with 

variable coefficients is shown schematically. The very rapid approach to the exact solutions is also shown 

schematically. 
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1. INTRODUCTION   

Most of the governing differential equations do not 

have analytical solutions in genuine events in nature and 

Physics. Besides, regarding the non-linear feature and also 

variable coefficients of afore-mentioned equations, the 

analytical solutions are not sought. Therefore, the 

researchers are driven to approximate solutions, obtaining 

from semi analytical methods such as the homotopy 

perturbation method (HPM) [1-23], variational iteration 

method (VIM) and Adomian decomposition method 

(ADM) [24-32]. By application of standard homotopy and 

perturbation methods, the HPM [1-23] is developed and 

modified by some researchers, namely [5-20], to acquire 

accuracy, convergence rapidity and decrease in 

computational work. The modified homotopy perturbation 

method has got its way in solution of many actual 

problems in real situations, although the validity of the 

solutions is limited to small range of space and time 

domains in the problems. This means that, the unsatisfied 

boundary conditions in the solution of HPM and other 

semi-analytical methods is not effective in the last results 

[14-15]. Consequently, to overcome this inherent 

insufficiency in the solutions of semi-analytical methods, 

an enormous computational endeavour has been made. 

Madani et al. [15] recently developed a hybrid of Laplace 

transform and homotopy perturbation method (LHPM) for 

solving of one dimensional non-homogeneous partial 

differential equation. The principle achievements of their 

work, was to get solutions for the differential equation 

with wide range of validity in the problem domain [15]. 

They proved, that the results of LHPM method, is more 

accurate in the range of the problem domain comparing 

HPM method [15].  

 However, most recently Nourazar et al [33] proposed 

a new idea of combination of the Fourier transform and 

the homotopy perturbation method, FTHPM, to solving 

the partial linear and non-linear differential equations. 

They showed that using the FTHPM is capable of solving 

the partial differential equations with greater accuracy 

than the previous homotopy perturbation method.  

The chief intention of this current work is to get better 

validity of solution in small range of problem domain by 

the so called new proposal, FTHPM, given by Nourazar et 

al [33]. In this method the deficiency in the semi-

analytical methods such as HPM occurring by boundary 

conditions which are earlier satisfied in one dimension 

[14-15], are improved. By combining the Fourier 

transform and HPM method, the new modified HPM is 

established. In the new modified HPM, all the conditions 

over the entire range of time and space problem domains 

are satisfied. By mathematic relations it is proved that as 

the number of partial sum of the infinite series of 

approximate solution are increased, the rapid approach to 

the closed form solution is obtainable. This solution is 

valid for the whole range of the problem domain. Three 

different time dependent non-homogeneous partial 

differential equations, by using the new modified HPM 

(FTHPM), are analyzed and solved in this work. The exact 

solutions of the problems as the closed form solutions are 

acquired. Besides, the ways of quick approaches of the 

solution to closed form solution are shown in the case 

studies schematically.  

2. HOMOTOPY PERTURBATION METHOD (HPM) 

The homotopy perturbation method (HPM) is 

originally initiated by He [1-13]. This is a combination of 

the classical perturbation technique and homotopy 

technique. The basic idea of the HPM for solving 

nonlinear differential equations is as follow; consider the 

following differential equation: 

𝐸(𝑢) = 0,       (1) 

where 𝐸 is any differential operator. We construct a 

homotopy as follow: 

𝐻(𝑢, 𝑝) = 𝐹(𝑢) + 𝑝(𝐸(𝑢) − 𝐹(𝑢)). (2) 

Where 𝐹(𝑢) is a functional operator with the known 

solution 𝑣0. It is clear that when 𝑝 is equal to zero then 

𝐻(𝑢, 0) = 𝐹(𝑢) = 0, and when 𝑝 is equal to 1, then 

𝐻(𝑢, 1) = 𝐸(𝑢) = 0. It is worth noting that as the 

embedding parameter 𝑝 increases monotonically from 

zero to unity the zero order solution 𝑣0continuously 

deforms into the original problem 𝐸(𝑢) = 0. The 

embedding parameter, 𝑝 ∈ [0, 1],  is considered as an 

expanding parameter [1-14]. In the homotopy perturbation 

method the embedding parameter 𝑝 is used to get series 

expansion for solution as:  

𝑢 = ∑ 𝑝𝑖

∞

𝑖=0

𝑣𝑖 = 𝑣0 + 𝑝𝑣1 + 𝑝2𝑣2

+ 𝑝3𝑣3 + ⋯ 

(3) 

when 𝑝 → 1, then Eq. (3) becomes the approximate 

solution to Eq. (1) as: 

𝑢 = 𝑣0 + 𝑣1 + 𝑣2 + 𝑣3 + ⋯ (4) 

The series (4) is a convergent series and the rate of 

convergence depends on the nature of Eq. (1) [1-14]. It is 

also assumed that Eq. (4) has a unique solution and by 

comparing the like powers of  𝑝 the solution of various 

orders is obtained. 

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/
https://www.google.com/search?biw=1200&bih=646&q=define+consequently&sa=X&ei=Bn_XVOOnHuG_ygPY1YD4Dg&ved=0CCAQ_SowAA
https://www.google.com/search?biw=1200&bih=646&q=define+enormous&sa=X&ei=v4DXVJapMIXuyQO5woL4Bw&ved=0CCAQ_SowAA


Amirkabir International  Journal of Science & Research 

(Modeling, Identification, Simulation & Control)  

(AIJ-MISC)  

On the simulation of partial differential equations using the hybrid of Fourier 

transform and homotopy perturbation method 

 

Vol. 46 - No. 1 - Spring 2014  47 

3.  BASIC IDEA OF FTHPM 

The general forms of one-dimensional non 

homogeneous partial differential equations with variable 

coefficients are considered for illustrating the basic idea of 

the present method.    

𝜇(𝑡)
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+ 𝜑(𝑥, 𝑡), 

 

(5) 

and 

𝜇(𝑡)
𝜕2𝑢

𝜕𝑡2
=

𝜕2𝑢

𝜕𝑥2
+ 𝜑(𝑥, 𝑡), (6) 

The initial condition is as follows: 

𝑢(𝑥, 0) = 𝑓(𝑥), (7) 

And the boundary conditions are: 

𝑢(0, 𝑡) = 𝑔0(𝑡),            𝑢𝑥(0, 𝑡) = 𝑔1(𝑡) (8) 

Here, it is to be noted that the FTHPM is a technique 

that may be used to solve the problems with the initial-

initial conditions only. 

Applying Fourier transform to Eq. (5) and Eq. (7) we 

obtain as:  

𝜇(𝑡)
𝑑�̂�

𝑑𝑡
+ �̂�𝑥(0, 𝑡) + 𝑖𝜔�̂�(0, 𝑡) + 𝜔2�̂�

− �̂�(𝜔, 𝑡) = 0 

�̂�(𝜔, 0) = 𝑓(𝜔), 

(9)  

In Eq. (9) �̂� is the Fourier transform of 𝑢. We develop 

a homotopy as follow: 

𝐻(�̂�, 𝑝) = 𝜇(𝑡)
𝑑�̂�

𝑑𝑡
− �̂�1(𝜔, 𝑡)

+ 𝑝(�̂�𝑥(0, 𝑡)

+ 𝑖𝜔�̂�(0, 𝑡) + 𝜔2�̂�

− �̂�2(𝜔, 𝑡)), 

(10) 

where, 

�̂�(𝜔, 𝑡) = �̂�1(𝜔, 𝑡) + �̂�2(𝜔, 𝑡). (11) 

when 𝑝 is equal to the unity, Eq. (10) converts back to the 

main differential equation and when 𝑝 is equal to zero the 

zero order solution is obtained. According to the concept 

of the HPM the solution of Eq. (10) can be expressed in 

series solution as: 

�̂�(𝜔, 𝑡) = ∑ 𝑝𝑖�̂�𝑖(𝜔, 𝑡)

∞

𝑖=0

= �̂�0(𝜔, 𝑡) + 𝑝1�̂�1(𝜔, 𝑡)
+ 𝑝2�̂�2(𝜔, 𝑡) + ⋯ 

(12) 

The inverse Fourier transform is taken from both sides of 

Eq. (12) as: 

𝑢(𝑥, 𝑡) = ∑ 𝑝𝑖𝑣𝑖(𝑥, 𝑡)

∞

𝑖=0

= 𝑣0(𝑥, 𝑡) + 𝑝1𝑣1(𝑥, 𝑡)
+ 𝑝2𝑣2(𝑥, 𝑡) + ⋯ 

 

(13) 

When 𝑝 → 1 the approximate solution of Eq. (5) can be 

readily obtained as: 

𝑢(𝑥, 𝑡) = 𝑙𝑖𝑚
𝑝→1

∑ 𝑝𝑖𝑣𝑖(𝑥, 𝑡)

∞

𝑖=0

= 𝑣0(𝑥, 𝑡) + 𝑣1(𝑥, 𝑡)
+ 𝑣2(𝑥, 𝑡) + ⋯ 

(14) 

4.  CASE STUDY 

We solve three one-dimensional transient and non-

homogeneous partial differential equations with variable 

coefficients to demonstrate the effectiveness and the 

strength of the present method, FTHPM, in the entire 

range of problem domain.  

Example 1. Consider the following non-homogeneous 

partial differential equation as the first case study 

problem: 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+ 𝑒−𝑥(𝑐𝑜𝑠(𝑡) − 𝑠𝑖𝑛(𝑡)), 

𝑢(𝑥, 0) = 𝑥, 

𝑢(0, 𝑡) = 𝑠𝑖𝑛(𝑡) ,    𝑢𝑥(0, 𝑡) = 1 −
𝑠𝑖𝑛(𝑡).  

(15) 

Eq. (15) is the Cauchy reaction-diffusion equation 

that has a wide range of applications in physical 

phenomenon of real life. The application of the Cauchy 

reaction-diffusion equations may be categorized as the 

spatial effects of ecology that can be modeled by the 

Cauchy reaction-diffusion equation. Different types of 

ecological phenomena such as the minimal patch size 

necessary to sustain a population, wave fronts 

propagation of biological invasions, and the formation of 

spatial patterns in the distributions of populations are 

supported and analyzed by Cauchy reaction-diffusion 

model. The Cauchy reaction-diffusion equations are also 

used in the modeling of chemical reactions in combustion 

phenomena. The interactions between the convection and 

dispersion generating the solitary waves, compactions are 

studied with the aid of the Cauchy problem of reaction-

diffusion model. 

By applying the Fourier transform to Eq. (15) we 

obtain as follow: 

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/
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𝜕�̂�

𝜕𝑡
+ (𝑠𝑖𝑛(𝑡) − 𝑐𝑜𝑠(𝑡)) (

1

𝑖𝜔 + 1
)

+ (1 − 𝑠𝑖𝑛(𝑡))
+ 𝑖𝜔 𝑠𝑖𝑛(𝑡) + 𝜔2�̂� = 0, 

�̂�(𝜔, 0) = −
1

𝜔2
  

 

(16) 

We construct a homotopy as: 

𝐻(𝑢, 𝑝) =
𝜕�̂�

𝜕𝑡
+ 𝑐𝑜𝑠(𝑡) (

1

𝑖𝜔 + 1
)

+ 𝑝 (1 + 𝜔2�̂�

+ 𝑠𝑖𝑛(𝑡) (
1

𝑖𝜔 + 1
+ 𝑖𝜔

− 1)) = 0,   𝑝 ∈ [0,1]. 

(17) 

The solution of Eq. (17) can be written in power series of 

𝑝 as: 

�̂� = �̂�(𝜔, 𝑡) = �̂�0(𝜔, 𝑡) + 𝑝1�̂�1(𝜔, 𝑡)
+ 𝑝2�̂�2(𝜔, 𝑡) + 

(18) 

Substituting Eq. (18) into Eq. (17) and setting the sum 

of terms of identical powers of 𝑝 equal to zero, we obtain:  

𝑝0 :   
𝑑�̂�0

𝑑𝑡
− 𝑐𝑜𝑠(𝑡) (

1

𝑖𝜔 + 1
)

= 0       ,      �̂�0(𝜔, 0)

=
−1

𝜔2
 

 

𝑝1 :   
𝑑�̂�1

𝑑𝑡
+ 𝜔2�̂�0 + 1

+ 𝑠𝑖𝑛(𝑡) (
1

𝑖𝜔 + 1
+ 𝑖𝜔

− 1)

= 0       ,      �̂�1(𝜔, 0)
= 0 

 

 

𝑝2 :   
𝑑�̂�2

𝑑𝑡
+ 𝜔2�̂�1 = 0       ,      �̂�2(𝜔, 0)

= 0 

 

𝑝3 :   
𝑑�̂�3

𝑑𝑡
+ 𝜔2�̂�2 = 0       ,      �̂�3(𝜔, 0)

= 0 

𝑝4 :   
𝑑�̂�4

𝑑𝑡
+ 𝜔2�̂�3 = 0       ,      �̂�4(𝜔, 0)

= 0 

.  

.  

(19) 

𝑝𝑖 :   
𝑑�̂�𝑖

𝑑𝑡
+ 𝜔2�̂�𝑖−1 = 0       ,      �̂�𝑖(𝜔, 0)

= 0   ,   𝑖 = 2, 3 … 

Solving for the zero order term,�̂�0(𝜔, 𝑡), we obtain: 

�̂�0(𝜔, 𝑡) =
𝑖 − 𝜔 − 𝑖𝜔2 𝑠𝑖𝑛(𝑡)

𝜔2(−𝑖 + 𝜔)
 (20) 

The inverse Fourier transform of Eq. (20) is obtained as: 

𝑆0(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) = 𝑥 + 𝑒−𝑥 𝑠𝑖𝑛(𝑡).  (21) 

This is the exact solution of the problem, Eq. (15). It is 

worth noting that in Eq. (19), the inverse Fourier 

transforms of the higher orders than zero are zero. This 

exact solution is not possible to be achieved by the HPM 

and modified HPM, because the conditions cannot 

completely be satisfied in there. In other words, even the 

boundary conditions of the problem change totally; the 

solution using the HPM will not be affected at all. 

Moreover, the very rapid convergence of the results 

toward the exact solution is achieved using the FTHPM. 

This shows that the method is capable of obtaining the 

solution of non-homogeneous parabolic differential 

equations with very rapid convergence towards the exact 

solutions. 

Example 2.  The below differential equation is 

considered as the second case study problem: 

𝜕𝑢

𝜕𝑡
+

𝜕2𝑢

𝜕𝑥2
+ 𝑢 − 𝑒−𝑥(1 + 2𝑡) = 0, 

 

 

𝑢(𝑥, 0) = 𝑥, 

𝑢(0, 𝑡) = 𝑡 ,    𝑢𝑥(0, 𝑡) = 𝑒−𝑡 − 𝑡. 

 

(22) 

The Fourier transform of Eq. (22) is: 

𝜕�̂�

𝜕𝑡
+ �̂� − 𝑒−𝑡 + 𝑡 − 𝑖𝜔𝑡 − 𝜔2�̂� − (

1 + 2𝑡

1 + 𝑖𝜔
)

= 0, 

 

�̂�(𝜔, 0) =
−1

𝜔2
 

 

(23) 

We construct a homotopy as: 

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/
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𝐻(�̂�, 𝑝) =
𝜕�̂�

𝜕𝑡
+ �̂�

+ 𝑝 (−𝑒−𝑡 + 𝑡 − 𝑖𝜔𝑡

− 𝜔2�̂� − (
1 + 2𝑡

1 + 𝑖𝜔
)) = 0,

𝑝 ∈ [0,1] . 

(24) 

The solution of equation (24) can be written in power 

series of 𝑝 as: 

By substituting of Eq. (25) into Eq. (24) and setting 

the sum of terms of identical powers in 𝑝 equal to zero, we 

obtain:  

𝑝0 :   
𝑑�̂�0

𝑑𝑡
+ �̂�0 = 0       ,      �̂�0(𝜔, 0) =

−1

𝜔2  

𝑝1 :   
𝑑�̂�1

𝑑𝑡
+ �̂�1 − 𝜔2�̂�0 + (−𝑒−𝑡 + 𝑡 − 𝑖𝜔𝑡)

− (
1 + 2𝑡

1 + 𝑖𝜔
)

= 0       ,      �̂�1(𝜔, 0) = 0 

𝑝2 :   
𝑑�̂�2

𝑑𝑡
+ �̂�2 − 𝜔2�̂�1 = 0       ,      �̂�2(𝜔, 0) = 0 

𝑝3 :   
𝑑�̂�3

𝑑𝑡
+ �̂�3 − 𝜔2�̂�2 = 0       ,      �̂�3(𝜔, 0) = 0 

𝑝4 :   
𝑑�̂�4

𝑑𝑡
+ �̂�4 − 𝜔2�̂�3 = 0       ,      �̂�4(𝜔, 0) = 0 

..  

𝑝𝑖 :   
𝑑�̂�𝑖

𝑑𝑡
+ �̂�𝑖 − 𝜔2�̂�𝑖−1 = 0       ,      �̂�𝑖(𝜔, 0)

= 0   ,   𝑖 = 2, 3 … 

(26) 

By solving the recursive differential equations, Eq. 

(26), we obtain the followings: 

 

�̂�0(𝜔, 𝑡) =
−1

𝜔2 𝑒−𝑡  

�̂�1(𝜔, 𝑡) = −
𝜔2𝑒−𝑡+𝜔2𝑡−𝜔2−𝑡

1+𝑖𝜔
  

�̂�2(𝜔, 𝑡) =
𝑒−𝑡(𝜔2−2𝜔4)

1+𝑖𝜔
−

𝜔2(𝜔2𝑡+𝜔2𝑡𝑒𝑡−2𝜔2𝑒𝑡−𝑡𝑒𝑡+𝑒𝑡)𝑒−𝑡

1+𝑖𝜔
  

�̂�3(𝜔, 𝑡) =
𝑒−𝑡(−3𝜔6+2𝜔4)

1+𝑖𝜔
−

1

2

𝜔4(−2𝑡+4𝑡𝜔2+𝜔2𝑡2+2𝑒𝑡𝜔2𝑡−6𝑒𝑡𝜔2−2𝑡𝑒𝑡+4𝑒𝑡)𝑒−𝑡

1+𝑖𝜔
 

�̂�4(𝜔, 𝑡) = −
1

6

𝑒−𝑡𝜔6(−18+24𝜔2+18𝜔2𝑡−12𝑡−3𝑡2+6𝜔2𝑡2+𝜔2𝑡3+6𝑒𝑡𝜔2𝑡−24𝑒𝑡𝜔2−6𝑡𝑒𝑡+18𝑒𝑡)

1+𝑖𝜔
  

 

(27) 

 

 

Then, we have 

𝑣0(𝑥, 𝑡) = 𝑥𝑒−𝑡    

𝑣1(𝑥, 𝑡) = 𝑒−𝑥(2𝑡 + 𝑒−𝑡 − 1) 

𝑣2(𝑥, 𝑡) = 𝑒−𝑥(3 − 2𝑡 − 3𝑒−𝑡 −  𝑡𝑒−𝑡) 

𝑣3(𝑥, 𝑡) = 𝑒−𝑥 (
𝑡2

2
𝑒−𝑡 + 3𝑡𝑒−𝑡 + 5𝑒−𝑡 + 2𝑡

− 5) 

𝑣4(𝑥, 𝑡) = 𝑒−𝑥 (−
1

6
𝑡3𝑒−𝑡 −

3

2
𝑡2𝑒−𝑡 − 5𝑡𝑒−𝑡

− 7𝑒−𝑡 − 2𝑡 + 7) 

.  

(28) 

By setting 𝑝 = 1 in Eq. (25) and taking the inverse 

Fourier transform, the solution of Eq. (22) can be written 

as  𝑢(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) + 𝑣1(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡) + ⋯  

Therefore, in view of Eq. (28) the solution in series form 

is written as:  

𝑢(𝑥, 𝑡) = 𝑥𝑒−𝑡 + 𝑒−𝑥(2𝑡 + 𝑒−𝑡 −
1) + 𝑒−𝑥(3 − 2𝑡 − 3𝑒−𝑡 −  𝑡𝑒−𝑡) +

𝑒−𝑥 (
𝑡2

2
𝑒−𝑡 + 3𝑡𝑒−𝑡 + 5𝑒−𝑡 + 2𝑡 −

5) + 𝑒−𝑥 (−
1

6
𝑡3𝑒−𝑡 −

3

2
𝑡2𝑒−𝑡 −

5𝑡𝑒−𝑡 − 7𝑒−𝑡 − 2𝑡 + 7) +  

(29) 

The Taylor series expansion for e−t is a below: 

𝑒−𝑡 =  ∑
(−1)𝑛𝑡𝑛

𝑛!

∞

𝑛=0

 (30) 

Substituting Eq. (30) into Eq. (29) and by the help of 

some algebraic manipulations the closed form of Eq. (29) 

is obtained as: 

𝑢(𝑥, 𝑡) = 𝑥𝑒−𝑡  + 𝑡𝑒−𝑥  . 

 

(31) 

�̂� = �̂�(𝜔, 𝑡) = �̂�0(𝜔, 𝑡) + 𝑝1�̂�1(𝜔, 𝑡)
+ 𝑝2�̂�2(𝜔, 𝑡) + 

(25) 
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Eq. (22) is the exact solution of the problem. In the 

continuation the trend of convergence towards the exact 

solution is sketched by the results of 𝑆0(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) to 

𝑆5(𝑥, 𝑡) = ∑ 𝑣𝑖(𝑥, 𝑡)5
𝑖=0  of the FTHPM solution of Eq. 

(22). As can be seen from figure (1) a trend of very rapid 

convergence (Figs. 1a-1f) towards the exact solution (Fig. 

2) is clearly shown. Table 1 shows the percentage of 

relative errors of the results of 𝑆0(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) to 

𝑆5(𝑥, 𝑡) = ∑ 𝑣𝑖(𝑥, 𝑡)5
𝑖=0  of the FTHPM solution of Eq. 

(22). The trend of very rapid The inverse Fourier 

transform of Eq. (27) is convergence, the maximum 

relative error of less than 1%, of the solution towards the 

exact solution is clearly shown. 

Example 3. Consider the following differential 

equation as the third case study problem:  

𝜕2𝑢

𝜕𝑡2 −
𝜕2𝑢

𝜕𝑥2 − 𝑢 = 0, 

 

𝑢(𝑥, 0) = sin(𝑥) + 1 ,      𝑢𝑡(𝑥, 0) = 0, 
 

𝑢(0, 𝑡) = cosh(𝑡) ,    𝑢𝑥(0, 𝑡) = 1. 

(32) 

By applying the Fourier transform to Eq. (32) we 

obtain as follow:  

𝜕2�̂�

𝜕𝑡2
+ 𝑖𝜔 𝑐𝑜𝑠ℎ(𝑡) + 1 + (𝜔2 − 1)�̂� = 0, 

�̂�(𝜔, 0) =
𝑖 − (1 + 𝑖𝜔)𝜔

𝜔(𝜔2 − 1)
   ,         �̂�𝑡(𝜔, 0)

= 0 .      

 

(33) 

 

 

 

 

Fig. 1 . the sketch of (a-f): 𝑺𝟎(𝒙, 𝒕) = 𝒗𝟎(𝒙, 𝒕) to 𝑺𝟓(𝒙, 𝒕) = ∑ 𝒗𝒊(𝒙, 𝒕)𝟓
𝒊=𝟎  of the FTHPM solution of Eq. (22). 
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Fig. 2 . the sketch of the exact solution of Eq. (22). 

TABLE 1. THE TABLE OF THE PERCENTAGE OF RELATIVE ERRORS OF THE RESULTS OF 𝑺𝟎(𝒙, 𝒕) = 𝒗𝟎(𝒙, 𝒕) TO 𝑺𝟓(𝒙, 𝒕) =
∑ 𝒗𝒊(𝒙, 𝒕)𝟓

𝒊=𝟎  OF THE FTHPM SOLUTION OF EQ. (22). 

  percentage of relative error (%RE) 

  𝒙 = 𝟏 𝒙 = 𝟓 𝒙 = 𝟏𝟎 𝒙 = 𝟏𝟓 

𝒕 = 𝟎. 𝟏 

𝑆0(𝑥, 𝑡) 3.9069 0.01489 0.00005017 2.25e-7 

𝑆1(𝑥, 𝑡) 0.1890 0.00072 2.43e-7 0 

𝑆2(𝑥, 𝑡) 0.006195 0.000023 0 0 

𝑆3(𝑥, 𝑡) 0.0001533 5.84e-7 0 0 

𝑆4(𝑥, 𝑡) 3.046e-6 0 0 0 

𝑆5(𝑥, 𝑡) 0 0 0 0 

𝒕 = 𝟏 

𝑆0(𝑥, 𝑡) 50 0.3650 0.00123 5.54e-6 

𝑆1(𝑥, 𝑡) 18.394 0.13427 0.000454 2.04e-6 

𝑆2(𝑥, 𝑡) 5.1819 0.03782 0.0000128 5.74e-7 

𝑆3(𝑥, 𝑡) 1.1668 0.0085 0.0000118 1.29e-7 

𝑆4(𝑥, 𝑡) 0.21744 0.001587 5.36e-6 0 

𝑆5(𝑥, 𝑡) 0.03444 0.000251 8.50e-7 0 

𝒕 = 𝟐 

𝑆0(𝑥, 𝑡) 84.4638 1.9526 0.0067 0.0000301 

𝑆1(𝑥, 𝑡) 47.9473 1.10843 0.0038 0.0000171 

𝑆2(𝑥, 𝑡) 22.8619 0.52851 0.001816 8.157e-6 

𝑆3(𝑥, 𝑡) 9.2073 0.21285 0.000731 3.285e-6 

𝑆4(𝑥, 𝑡) 3.1733 0.0733 0.000252 1.13e-6 

𝑆5(𝑥, 𝑡) 0.94971 0.0219 0.0000754 2.58e-7 

𝑝0 :   
𝑑2�̂�0

𝑑𝑡2
+ 𝑖𝜔 𝑐𝑜𝑠ℎ(𝑡) = 0       ,      

 �̂�0(𝜔, 0) =
𝑖 − (1 + 𝑖𝜔)𝜔

𝜔(𝜔2 − 1)
   ,    �̂�0𝑡(𝜔, 0) = 0 

𝑝1 :   
𝑑2�̂�1

𝑑𝑡2
+ (𝜔2 − 1)�̂�0 + 1 = 0       ,      �̂�1(𝜔, 0) = 0 

𝑝2 :   
𝑑2�̂�2

𝑑𝑡2
+ (𝜔2 − 1)�̂�1 = 0       ,               �̂�2(𝜔, 0) = 0 

𝑝3 :   
𝑑2�̂�3

𝑑𝑡2
+ (𝜔2 − 1)�̂�2 = 0       ,               �̂�3(𝜔, 0) = 0 

𝑝4 :   
𝑑2�̂�4

𝑑𝑡2
+ (𝜔2 − 1)�̂�3 = 0       ,               �̂�4(𝜔, 0) = 0 

..  

𝑝𝑖 :   
𝑑2�̂�𝑖

𝑑𝑡2 + (𝜔2 − 1)�̂�𝑖−1 = 0       ,               �̂�𝑖(𝜔, 0) = 0   ,   𝑖 = 2, 3 … 

 

(36) 

 

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/


Amirkabir International  Journal of Science & Research 

(Modeling, Identification, Simulation & Control)  

(AIJ-MISC)  

S. S. Nourazar , A. Mohammadzadeh and M. Nourazar 

 

 

Vol. 46 - No. 1 - Spring 2014 52 

We construct a homotopy as: 

𝐻(�̂�, 𝑝) =
𝜕2�̂�

𝜕𝑡2
+ 𝑖𝜔 𝑐𝑜𝑠ℎ(𝑡)

+ 𝑝(1 + (𝜔2 − 1)�̂�) = 0,
𝑝 ∈ [0,1]. 

(34) 

The solution of Eq. (34) can be written in power 

series of 𝑝 as: 

�̂� = �̂�(𝜔, 𝑡) = �̂�0(𝜔, 𝑡) + 𝑝1�̂�1(𝜔, 𝑡)
+ 𝑝2�̂�2(𝜔, 𝑡) +    

(35) 

Substituting Eq. (35) into Eq. (34) and setting the sum 

of terms of identical powers of 𝑝 equal to zero, we get: 

By solving the recursive differential equations, Eq. 

(36), we obtain the followings: 

𝑣0(𝑥, 𝑡) = 1 + 𝑠𝑖𝑛(𝑥)    

 

𝑣1(𝑥, 𝑡) =
𝑡2

2
 

 

𝑣2(𝑥, 𝑡) =
𝑡4

24
 

 

𝑣3(𝑥, 𝑡) =
𝑡6

720
 

 

𝑣4(𝑥, 𝑡) =
𝑡8

40320
 

 

(37) 

By setting 𝑝 = 1 in Eq. (35) and taking the inverse 

Fourier transform, the solution of Eq. (32) can be written 

as  𝑢(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) + 𝑣1(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡) + ⋯  

Therefore, in view of Eq. (37) the solution in series form 

is written as:  

𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛(𝑥) + 1 +
𝑡2

2
+

𝑡4

24
+

𝑡6

720

+
𝑡8

40320
+ ⋯   

(38) 

The Taylor series expansion of cosh(𝑡) is the 

following: 

𝑐𝑜𝑠ℎ(𝑡) = 1 +
𝑡2

2
+

𝑡4

24
+

𝑡6

720
+

𝑡8

40320
+ ⋯

= ∑
𝑡2𝑛

(2𝑛)!

∞

𝑛=0

 

 

(39) 

 

Substituting Eq. (39) into Eq. (38), the closed form of 

Eq. (38) is given by: 

𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠ℎ(𝑡) (40) 

This is the exact solution of the problem, Eq. (32). In 

the following we have shown the trend of convergence of 

the solutions of Eq. (32) using the FTHPM towards the 

exact solution by sketching the results of 𝑆0(𝑥, 𝑡) =

𝑣0(𝑥, 𝑡)  to 𝑆5(𝑥, 𝑡) = ∑ 𝑣𝑖(𝑥, 𝑡)5
𝑖=0 . As can be seen from 

Figs (3a-3f) a very rapid convergence towards the exact 

solution (Fig. 3) is clearly shown. Table 2 shows the 

percentage of relative errors of the results of 𝑆0(𝑥, 𝑡) =

𝑣0(𝑥, 𝑡) to 𝑆5(𝑥, 𝑡) = ∑ 𝑣𝑖(𝑥, 𝑡)5
𝑖=0  of the FTHPM 

solution of Eq. (32). The trend of very rapid convergence, 

the relative error of almost zero, of the solution towards 

the exact solution is clearly shown. 

5. CONCLUSIONS 

A new effective modification to the homotopy 

perturbation method, the Fourier transform homotopy 

perturbation method (FTHPM), is presented in this paper. 

The new modification to the HPM is the combination of 

the Fourier transform and homotopy perturbation method. 

The validity and effectiveness of the new method is shown 

by solving three non-homogenous differential equations 

with variable coefficients and the very rapid approach to 

the exact solutions is shown schematically. The very rapid 

approach towards the exact solutions of the new method, 

FTHPM, indicates that the amount of computational work 

is much less than those required for other previous semi-

analytical methods. Moreover, the deficiency of the 

previous HPMs caused by unsatisfied boundary conditions 

is overcome by the new method where, the solution is 

shown to be valid in the entire range of problem domain. 

Therefore, it is concluded that the FTHPM can be 

considered as a powerful and efficient tool in obtaining 

the accurate solutions as well as other effective numerical 

methods. 

 

Fig. 3 . the sketch of the exact solution of Eq. (32) 
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Fig. 4 . the sketch of (a-f): 𝑺𝟎(𝒙, 𝒕) = 𝒗𝟎(𝒙, 𝒕) to 𝑺𝟓(𝒙, 𝒕) = ∑ 𝒗𝒊(𝒙, 𝒕)𝟓
𝒊=𝟎  of the FTHPM solution of Eq. (32). 
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TABLE 2. THE TABLE OF THE PERCENTAGE OF RELATIVE ERRORS OF THE RESULTS OF 𝑺𝟎(𝒙, 𝒕) = 𝒗𝟎(𝒙, 𝒕) TO 𝑺𝟓(𝒙, 𝒕) =
∑ 𝒗𝒊(𝒙, 𝒕)𝟓

𝒊=𝟎  OF THE FTHPM SOLUTION OF EQ. (32). 

  percentage of relative error (%RE) 

  𝒙 = 𝟏 𝒙 = 𝟓 𝒙 = 𝟏𝟎 𝑥 = 15 

𝒕 = 𝟎. 𝟏 

𝑆0(𝑥, 𝑡) 0.271 10.8598 1.0855 0.3023 

𝑆1(𝑥, 𝑡) 0.000022 0.0009045 0.0009041 0.000251 

𝑆2(𝑥, 𝑡) 0 0 0 0 

𝑆3(𝑥, 𝑡) 0 0 0 0 

𝑆4(𝑥, 𝑡) 0 0 0 0 

𝑆5(𝑥, 𝑡) 0 0 0 0 

𝒕 = 𝟏 

𝑆0(𝑥, 𝑡) 22.775 92.9684 54.3592 24.7601 

𝑆1(𝑥, 𝑡) 1.80666 7.3748 4.3121 1.9641 

𝑆2(𝑥, 𝑡) 0.05930 0.2420 0.1415 0.0644 

𝑆3(𝑥, 𝑡) 0.001052 0.00429 0.00251 0.00114 

𝑆4(𝑥, 𝑡) 0.0000116 0.0000475 0.0000277 0.0000127 

𝑆5(𝑥, 𝑡) 0 0 0 0 

𝒕 = 𝟐 

𝑆0(𝑥, 𝑡) 59.999 98.5347 85.8311 62.5996 

𝑆1(𝑥, 𝑡) 16.5563 27.1895 23.6841 17.2736 

𝑆2(𝑥, 𝑡) 2.07506 3.40777 2.96842 2.16497 

𝑆3(𝑥, 𝑡) 0.14424 0.23687 0.20633 0.150485 

𝑆4(𝑥, 𝑡) 0.00631 0.010378 0.00904 0.006593 

𝑆5(𝑥, 𝑡) 0.000189 0.000311 0.000271 0.000198 
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