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ABSTRACT 

In this paper, a new smooth second order sliding mode control is proposed. This algorithm is a modified 

form of Super Twisting algorithm. The Super Twisting guarantees the asymptotic stability, but the finite time 

stability of proposed method is proved with introducing a new particular Lyapunov function. The Proposed 

algorithm which is able to control nonlinear systems with matched structured uncertainty, is able to 

guarantee the finite time stability. The main advantage of this second order sliding mode control is reaching 

to sliding surface with high precision without chattering in control signal. In simulation section, the proposed 

algorithm is compared with the boundary layer sliding mode control and then is applied to designing a finite 

time nonlinear guidance law that is robust with respect to target maneuvers. Simulation results show that the 

control input in this algorithm is smooth and has no chattering and by applying this method, sliding variables 

will converge to zero in a given desired finite time. 
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1.  INTRODUCTION 

Sliding mode control is known to be robust against 

parameter uncertainties and external disturbances. This 

approach has been recognized as one of the efficient tools 

to design robust controllers for complex high-order 

nonlinear dynamic plants operating under various 

uncertain conditions. The major advantage of sliding 

mode is the low sensitivity to plant parameter variations 

and disturbances. Sliding mode control enables the 

decoupling of the overall system motion into independent 

partial components of lower dimensions, which reduces 

the complexity of feedback design. Traditional sliding 

mode control or variable structure control has some 

intrinsic problems, such as discontinuous control that 

often yields chattering in control input [1]. Chattering may 

excite unmolded high frequency dynamics, which 

degrades the performance of the system and may even 

lead to instability [2].  

One approach to eliminate chattering in control signal 

is to use a continuous approximation of the discontinuous 

sliding mode controller. Continuous approximation leads 

to tracking to within a guaranteed precision rather than 

perfect tracking [1]. Another approach to cope with this 

problem and achieve higher accuracy is high order sliding 

mode control. HOSM has two important features that 

make it a better choice in designing proper controllers. It 

improves the accuracy of the design, which is a very 

important issue, and may provide a continuous control 

signal. Higher order sliding mode generalizes the standard 

SM idea, seeking to zeroing not just the sliding variable 

but also some of its time derivatives. In particular, second 

order sliding modes (2-SM) would provide for zeroing the 

sliding variable and its first time derivative. Hence, 2-SM 

algorithms synthesize a discontinuous control u  with u

continuous; therefore, reducing chattering and avoiding 

strong mechanical efforts while preserving 1-SM 

advantages. As shown in Fig. 1, in the first order sliding 

mode algorithm sliding takes place on the S = 0 axis, 

while Fig. 2 shows that in the second order sliding mode 

algorithm sliding will take place at the origin only [3], [4]. 

In [5] higher order sliding mode control techniques, in 

specific ‘‘prescribed convergence law’’, ‘‘quasi 

continuous’’ and ‘‘super twisting’’ control algorithms, are 

used to robustly stabilize the glucose concentration level 

of a diabetic patient in the presence of parameter 

variations and meal disturbance. In [6], a new smooth 

second order sliding mode method for systems with 

relative degree one was proposed and asymptotic stability 

of this algorithm was proved. In [7] finite time second 

order sliding mode was proposed for removing chattering 

in systems with relative degree two. In [8] a second order 

sliding mode controller was designed for uncertain linear 

systems with parametric uncertainty and [3] studied the 

applicability of ‘‘sub-optimal’’, ‘‘twisting’’, ‘‘super-

twisting’’ and ‘‘with a prescribed law of variation’’ 

algorithms of second order sliding mode control strategies 

to a wind energy conversion system, which present finite 

time convergence, robustness, chattering and mechanical 

stress reduction, and are of quite simple online operation 

and implementation. In [9] a second order discrete sliding 

mode control approach was used for the temperature 

control of a chemical reactor.  

 

Fig. 1.  1-SMC reaching phase (Sliding takes place on the S = 0 axis) 

 

Fig. 2. 2-SMC reaching phase (Sliding takes place in the origin 

only)  

Recently finite time stability and finite time control 

have been constructed for some systems [10]. Finite time 

stable systems might enjoy not only faster convergence 

but also better robustness and disturbance rejection 

properties [11]. In [12], a Lyapunov stability theorem has 

been presented for testing finite time stability of a double 

integrator system by continuous, unbounded or bounded, 

state feedback control law. Finite time stability of 

guidance systems have been demonstrated in [13]. This 

paper cannot guaranty the convergence of the LOS rate to 

zero in the finite time and only analyze the stability of the 

guidance system in a short time. In [14], a nonlinear 
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guidance scheme with finite time convergence based on 

Lyapunov scalar differential inequality was developed. In 

[15], a new smooth second order sliding mode was 

proposed and its finite time stability was proved using 

homogeneity based technique for interceptor guidance 

system. In this reference the control signal needs more 

complicated calculations and the sliding surface is defined 

specially using relative range that being unable to meet 

zero until zeroing range and has not any benefits of the 

finite time stability.  

In this paper, a new finite time second order sliding 

mode algorithm is proposed. Finite time convergence is 

proved using a new Lyapunov function. This algorithm 

out performs the boundary layer method and its finite time 

stability is verified through a simulation example. This 

algorithm is used for design a smooth finite time guidance 

law.  

The paper is organized as follows. In section 2, the 

conventional first order and second order sliding mode 

control algorithms is introduced. Section 3 presents the 

new finite time second order sliding mode control. In 

section 4 simulation results are presented. Conclusions are 

reported in section 5. 

2. SLIDING MODE CONTROL 

Consider a first order nonlinear system 

(1) ( ) ,x f x u w w      

where )(xf  is a known nonlinear part, and w  is a 

bounded uncertainty. With considering 0ex  as 

equilibrium point, the control objective is zeroing state 

variable. Let us introduce a sliding variable [1] 

(2) xS   

Assume that u  in equation (1) is a control input, and 

must be designed such that this system has the desired 

properties. Due to introducing sliding variable (2), if 

0S , then 0x  is obtained, and finally the variable x  

has the desired properties. Conventional first order sliding 

mode control makes variable S  equal to zero in finite 

time and then maintain the condition 0S  for all future 

time. Typical sliding mode control consists of a reaching 

mode, during which the sliding variable S  moves to the 

sliding surface 0S , and a sliding mode, during which 

the sliding variable is confined to the sliding surface and 

the sliding variable has no variation from sliding surface 

in system without uncertainty. Let us take the control 

input as [1]: 

(3) reachingeq uuu   

equ  is the equivalent control determined to cancel the 

known terms on the first derivation of sliding variable in 

system without uncertainty as [1]: 

(4) ( ) 0 ( )eq eqS f x u u f x       

If there is no uncertainty in the system, equu   will 

maintain the system in the sliding surface. Now, let us 

consider the case where uncertainties exist. In 

conventional sliding mode control the reaching control is 

selected by [1]: 

(5) )(SKSignureching 
 

A sufficient condition to guarantee the finite time 

attractiveness of sliding surface 0S  for 0S , is to 

ensure [16]:  

(6) V SS S    

where   is a strictly positive constant, which implies that 

[16]: 

(7) 


)0(S
treach   

In order to satisfy the sliding condition (6) despite 

uncertainty on the dynamics system (1), substituting 

equations (2) and (5) into equation (6) to obtain 

(8) )(w
x

x
K   

By choosing K  in (8) to be large enough, we can now 

guarantee that (8) is verified. So we let 

(9)  K
 

where   denotes the bound of w . By substituting 

equations (4), (5) and (9) into equation (3), the control 

input signal is given as 

(10) )()()( xSignxfu  
 

It is certain from equation (7) that the trajectory of x  

converges to the manifold 0S  at some finite time and it 

will be confined to that manifold for all the future time 

[1].  

The sliding mode controller (10) contains the 

discontinuous nonlinear function (.)Sign . This 

nonlinearity can cause the chattering problem due to 

delays or imperfections in the switching devices [1], [2]. 

To eliminate the chattering in control input, the higher 
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order sliding modes generalize the conventional sliding 

mode idea, seeking to zero not just the sliding variable but 

also some of its time derivatives. In particular, second 

order sliding mode would provide for the zeroing of the 

sliding variable and its first time derivative in finite time, 

through discontinuous control action acting on its second 

time derivative, being sliding variable of relative degree 2 

or 1. Hence, second order sliding mode algorithms 

synthesis a discontinuous controller )(tu  which makes 

0 SS  , with controller )(tu  continuous; therefore, 

reducing chattering and avoiding strong mechanical 

efforts while preserving conventional sliding mode control 

advantages [5], [3] and [4].  

Prescribed law of variation (PLV) in the class of 

second order sliding mode algorithms is the control action 

depends on a function )(Sg determined during the design 

process, and the convergence properties are strictly related 

to it. The function must be continuous and smooth 

everywhere. The control law and the chosen function are 

[5]: 

(11) 
 

1/2

( )

( ) ( ), 0

reching Mu V Sign S g S

g S S Sign S 

  

  
 

It should be noticed that the algorithm needs not just 

S  to be known, but also its time derivative and the value 

of )(Sg . This controller trajectory in the phase plane is 

shown in Fig. 3. 

 

Fig. 3. PLV controller trajectory in the phase plane 

In Sub-optimal (SO) algorithm, trajectories in the 

SS   plane are confined within limit parabolic arcs 

which include the origin, so the convergence behavior 

may include twisting around the origin, ‘‘bouncing’’ on 

the S  axis or a combination of both. The control law may 

be written as [3]: 

(12) ( )
2

M
reching M

S
u V Sign S    

where 
MS  is variable and corresponds to the last external 

value of the sliding variable. This algorithm requires the 

ability to detect the zeros of S , and the corresponding 

values of S  in those instants, 
MS . The two possible 

trajectories of the sub-optimal algorithm in the phase 

plane are shown in Fig. 4. 

 

Fig. 4.  The two possible trajectories of the sub-optimal algorithm in 

the phase plane 

The twisting (T) algorithm is characterized by the 

manner in which its trajectories converge to the origin in 

the sliding plane SS  . The knowledge of the signs of S  

and S  is needed, and the control law is given by [3]: 

(13) 1 2 1 2( ) ( ), 0rechingu rSign S r Sign S r r      

The trajectory of the twisting algorithm in the phase 

plane is shown in Fig. 5. 

 

Fig. 5. Twisting controller trajectory in the phase plane 

Super twisting is a second order algorithm developed 

to reduce chattering in systems with Relative Degree 1, by 

http://eej.aut.ac.ir/
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using an integral state in the control, and with the great 

advantage of not requiring information of S . The 

trajectories converge to the origin of the sliding plane 

turning around it in a typical way. The control law is 

described by two terms, one discontinuous defined by its 

time derivative, and the other, a continuous function of 

sliding variable activated only during the reaching phase 

[3]: 

(14) 
1 1

1 2

( ) ( );0 1

( ) ( )

reachingu u t k S Sign S

u t k Sign S


    


 

However, control signal in the Super Twisting control 

algorithm is not smooth and guarantee the asymptotic 

stability. This controller trajectory in the phase plane is 

shown in Fig. 6 [4]. 

 

Fig. 6. Super Twisting controller trajectory in the phase plane 

3.  NEW SECOND ORDER SLIDING MODE  

We introduce a new finite time stable second order 

algorithm. To guarantee the finite time attractiveness of 

0S  for 0S , we use the following Theorem. 

Theorem 1: The reaching term of control input  

(15)   dSSignSSignureching )()( 21
 

with 2 1( ) 0      provides for the finite time 

convergence sliding variable.  

Proof: Substituting equations (4) and (15) into the (3) 

and by putting the resulted equation in the (1) and (2), the 

sliding variable dynamics yields 

(16) 1 2( ) ( )S Sign S Sign S d w       

The system (16) can be equivalently presented by a 

system of two first order equations: 

(17) 
1 1 1 2

1

2 2 1

( )
;

( )

Sign w
S

Sign

   


  

    


 

 

Let a Lyapunov function candidate be: 

(18) 2
212

2

1
)(  V

 

Then the Lyapunov function derivative will be 

(19)    

1
2 1 2 2

1

1
2 1 1 2 2 2 1

1

1 2 2 1

( ) ( )

( )

V

Sign w Sign

wSign


   




      



   

  

     

 

 

To guarantee the finite time attractiveness of sliding 

surface for (0) 0S  , a sufficient condition is to ensure  

(20) V    

where  is a strictly positive constant. Let reacht  be the 

time required to hit the sliding surface 0S . Integrating 

(20) between 0t  and reachtt   leads to 

(21) 

 

 

( )

( 0) 0

2

2 1 2

2

2 1 2

( ) ( 0)

( ) ( 0)

1
( ) ( )

2

1
(0) (0)

2

reach reachV t t t t

V t t

reach

reach

reach reach

reach

dV
V

dt

dV dt

V t t V t

t t t

t t

t

 



 

  

   

 

 

     

  

   

    

 

  

   

 

 

where S1 , 
t

dtSSign
022 )(  and 0)( reachtS . 

Finally:  

(22) 

 

 










)0(
)0(

)0(
2

1
)0(

)(
2

1
)(

2

2

2
0

0
22

2

0
22

S
ttS

tSSignS

tSSigntS

reachreach

reach

t

reachreach

reach





















 

Therefore, (20) is a finite time condition with finite 

reaching time (22). 
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Now, in order to satisfy the sliding condition (20) 

despite uncertainty on the dynamics system (17), 

substituting equation (19) into (20) yields 

(23) 0)( 2211221   wSign
 

By choosing 2 1( ) 0       in (23), we can 

now guarantee that (20) is verified. So, we proved finite 

time convergence 
S1  and 2  to zero. In the other 

words we have a finite time second order sliding mode 

controller. 

By substituting equations (4) and (15) into equation 

(3), control input becomes 

(24)   dxSignxSignxfu )()()( 21  

The switching bias terms in this control law act as an 

estimate of the uncertainty, when the system is not in 

sliding mode steady state. This algorithm is proposed for 

any nonlinear systems with matched structured 

uncertainty, but only is able to guarantee the reaching 

phase in finite time.  

4. SIMULATION EXAMPLES 

In this section, first the proposed algorithm is 

compared with the boundary layer method in a simple 

nonlinear example and its finite time stability is checked. 

Then, the new second order sliding mode is applied to 

designing guidance law for generating a smooth 

acceleration for intercepting with a maneuvering target. In 

this example removing chattering the )(xSign  function in 

(24) is replaced with )(cxTanh  function. Therefore the 

proposed control law is given as  

(25)   dxcTanhxcTanhfu )()( 2211  

where 
1c  and 

2c  are positive constants parameter for 

adjusting the smoothness of control signal. The response 

of proposed continuous function with deferent values for 

c , saturation and discontinuous Signum functions are 

shown in Fig. 7. As shown in this Figure with increasing 

value of c  we are able to adjust the precision of the 

proposed function. 

A. Comparison With The Boundary Layer Smc  

For verifying the performance of the proposed SMC, 

we apply the algorithm to a simple nonlinear model. The 

nonlinear system equation is: 

(26) 2 , 1x xx w u w      

 

Fig. 7. The responses of Tanh(.), Sat(.) and Sign(.) functions.  

Assume that the desired state is 
)0,0(),( xx 
. For 

designing a proper control law, sliding variable is 

introduced as: 

(27) S x x   

An equivalent control is determined to cancel the 

known terms on the right hand side of equation S  that 

guarantee sliding along manifolds 0S : 

(28) 
2

2eq

S x x xx w u x

u xx x

 



       

 
 

If there is no uncertainty ( 0w ) in the system, then 

the equivalent control will maintain the system in the 

sliding surface 0S .  

Now, let us consider the case where uncertainty exists. 

To guarantee the finite time attractiveness of 0S , we 

apply Theorem 1. Therefore, for the reaching law given in 

(15), the control input is 

(29) 
  

  

1 1

2 2

2 Tanh

Tanh

u xx x c x x

c x x d

  

  

   

 
 

Now we consider the situation in which the initial 

condition in (26) is 
)2,1())0(),0(( xx 

, 1  and 

uncertainty as shown in Fig. 8. We apply then the 

proposed second order sliding mode controller (29) with 

21  , 52  , 101 c  and 1002 c . 

Figs. 9 and 10 show the control input and reaching 

phase in the proposed SOSMC and conventional SMC. As 

shown in these Figures, the control input in the proposed 

SOSMC is smooth and in conventional SMC has 

chattering. Also in conventional SMC, sliding takes place 

on the S = 0 axis in reaching phase, But in second order 

sliding mode algorithm sliding takes place in the origin 

only. 

-1 1

-1

1

X

Y

 

 
Y=Sign(X)

Y=Tanh(5X)

Y=Tanh(10X)

Y=Sat(10X)
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Fig. 8. Uncertainty (W). 

Control input and reaching phase in the proposed and 

boundary layer SMC are shown in Figs. 11 and 12. These 

Figures show that the control input in the boundary layer 

is smooth and has no chattering, but sliding takes place on 

the S = 0 axis in reaching phase. 

Sliding variable in the proposed and the boundary 

layer SMC is shown in Figs. 13 and 14. These Figures 

show that the S-variable in the proposed algorithm reaches 

the sliding surface in shorter time and higher precision 

than boundary layer SMC. Therefore, using boundary 

layer method the chattering is removed but the precision is 

decreased.  

 

Fig. 9. Control Input Signal using Proposed SOSMC and 

Conventional SMC. 

 

Fig. 10. Reaching Phase using Proposed SMC and Conventional 

SMC. 

 

Fig. 11. Control Input Signal using Proposed SMC and Boundary 

Layer SMC. 

 

Fig. 12. Reaching Phase using Proposed SMC and Boundary Layer 

SMC. 
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Fig. 13. Sliding Variable using Proposed SMC and Boundary Layer 

SMC. 

 

Fig. 14. Sliding Variable using Proposed SMC and Boundary Layer 

SMC (Sliding Phase). 

 

As shown in Figs. 15 and 16 the state variables in the 

proposed algorithm converge to zero with a lower 

overshoot than that of the boundary layer SMC.  

The system trajectories using the proposed SMC and 

boundary layer SMC in the Phase Plane are shown in Fig. 

17. This Figure shows that the reaching phase in proposed 

sliding mode algorithm is shorter than that of the 

boundary layer method. In other word using proposed 

method the system trajectory selects a shorter way to 

reaching the sliding surface. 

 

Fig. 15. State Variable 1 using Proposed SMC and Boundary Layer 

SMC. 

 

Fig. 16. State Variable 2 using Proposed SMC and Boundary Layer 

SMC. 

 

Fig. 17. System Trajectory using Proposed SMC and Boundary 

Layer SMC in the Phase Plane. 

 

Now we consider the situation in which the initial 

condition in (26) is ( (0), (0)) ( 1, 1)x x    , 1   

and constant uncertainty 4.0w . We apply the proposed 

controller (29) for 10,5,2rt . The controller gains are 

determined using (22) and (23) as shown in Table 1. Note 

that in this case the constant parameters are 5.0 , 

2001 C , 2502 C  and 20 S . 

TABLE 1.  CONTROLLER GAINS FOR 10,5,2rt . 

10 5 2 rt  

0.7 0.9 1.5 
1  

0.3 0.6 1 
2  

0.06 0.24 1 
 

 

Figs. 18 and 19 show the control input and reaching 

phase using the proposed and conventional SMC. As 

shown in these Figures for decreasing the reaching time 

the initial amplitude of the control input should increase. 

Also, sliding takes place at the origin.  
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Fig. 18. Control Input Signal using Proposed SMC with 

10,5,2rt . 

 

Fig. 19. Reaching Phase using Proposed SMC with 10,5,2rt . 

As shown in Figs. 20 and 21 sliding variable reaches 

zero in the desired time. 

 

Fig. 20. Sliding Variable using Proposed SMC with 10,5,2rt . 

 

Fig. 21. System Trajectory using Proposed SMC with 10,5,2rt  

in the Phase Plane. 

B.  Guidance Application  

In this section, we apply the proposed algorithm for 

designing guidance law. For this, consider a two 

dimensional interceptor and target engagement as shown 

in Fig. 22. The kinematic relation between the target and 

interceptor motion is described as:  

(30)   2

1 1m t

d
r r A A

dt
    

 (31)   2 2m t

d
r r A A

dt
      

where r  is the relative range between target and 

interceptor,   denotes the line of sight angle with respect 

to a reference axis, r  is the relative lateral velocity 

between interceptor and target, 
1tA  and 

2tA  are the radial 

and tangential components of target acceleration and 1mA  

and 2mA  are the radial and tangential components of 

interceptor acceleration, respectively [16, 17 and 18]. 

Note from (30) and (31) that 1tA , and 2tA  can be 

treated as bounded uncertainties of the system. In equation 

(30) the control input is 1mA  and control variable is r . In 

equation (31) the control input is 2mA  and control variable 

is r . 

 

Fig. 22. Interceptor - target engagement geometry 

For designing guidance law, closing velocity error and 

relative lateral velocity could be considered in the sliding 

variable as 

(32) 
1

2

dS r r

S r

 



 

Maintaining the closing velocity in a desired value and 

nulling the relative lateral velocity provide the motivation 

for these sliding variables. By a suitable choice of controls 

1mA  and 2mA , if we are able to achieve 0, 21 SS , thus 

interception is guaranteed. 
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The equivalent guidance command for the known 

dynamics is the equivalent control determined to cancel 

the known terms on the right hand side of Eqs. (30) and 

(31) that guarantee sliding along manifolds 0, 21 SS . 

Therefore the first derivative of sliding surfaces must be 

zero and these equivalent controls are achieved as: 

(33) 

2

1

2

eq

eq

m

m

A r

A r





 


 

 

If there is no uncertainty (target does not maneuver) in 

the system, then equivalent control will maintain the 

system in the sliding surfaces.  

Now, let us consider the case where target accelerating 

exist. To guarantee the finite time attractiveness of 

0, 21 SS , we use Theorem 1. Therefore the guidance 

commands are designed as follow: 

(34) 
2

1 1 2( ) ( )m d dA r sign r r sign r r d         

 

(35) 2 3 4( ) ( )mA r sign r sign r d           

with 0)( 1112    and 0)( 2324   , 

which provides for the finite time convergence of the 

closing velocity and relative lateral velocity where 1  is 

the bound of 1tA  and 2  is the bound of 1tA .  

The switching bias terms in this guidance law act as 

estimates of the target acceleration, when the system is not 

in steady state sliding mode. In other words, the guidance 

law (35) behaves like the APN guidance law. This 

guidance law has been named as the Finite Time Second 

Order Sliding Mode Guidance. This guidance law can also 

be viewed as a form of the Modified Proportional 

Navigation (MPN). However, the main advantage of this 

guidance law over APN and MPN is that it does not 

require any explicit target maneuver estimation. 

We apply the proposed controllers (34) and (35) for 

guidance system with equations (30) and (31). we 

consider the situation in which the initial relative distance 

is 30 km, the closing velocity is 700 m/s, and the lateral 

relative velocity is 423 m/s and in the proposed guidance 

laws for the purpose of implementation, the (.)Sign  

function is replaced with (.)Tanh  function. Also, the 

target maneuvers as shown in Figs. 23 and 27 normal to 

the line of sight. Note that, the bounds of target 

accelerations (uncertainty) are 51   and 202   that 

are used in (34) and (35). 

First, we apply the proposed guidance law (34) in 

equation (30). Fig. 23 shows the guidance command 1 

(control input 1). As seen in this Figure, the control input 

is smooth and has no chattering, but with increasing the 

value of 
1 , the maximum magnitude of the missile 

acceleration is increased, 

Fig. 24 shows the closing velocity (state variable 1) 

and Fig. 25 shows the sliding variable 1. As shown in 

these Figures, the control variable 1 in desired finite time 

reaches to desired value and sliding variable 1 reaches to 

sliding surface 01 S . Also with varying the value of 

parameter 
1 , we are able to adjust the time of zeroing 

sliding variable.  

 

Fig. 23. missile acceleration (control input 1) and target acceleration 

(uncertainty) with 
131211   . 

 

Fig. 24. closing velocity (state variable 1) with different value for 
1  

(
131211   ). 

Fig. 26 presents the phase plane obtained by using the 

proposed guidance law. The plots confirm the expected 

behavior of the sliding variable 1 and the phase plane 

converging to zero in a finite time.  

Therefore, the finite time second order sliding mode 

controller (34) is able to eliminate chattering in control 

signal and finite time stabilizing the system (30). This 

controller is further robust against to uncertainty (target 

maneuvers 1tA ). 

Now we apply the proposed guidance law (35) in (31). 

Fig. 27 shows the guidance command input 2 (control 

input 2). As seen in this Figure, the control input is 

smooth and has no chattering, but by increasing the value 
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of 2 , the maximum magnitude of the missile 

acceleration is increased, 

 

Fig. 25. sliding variable 1 with 
131211   . 

 

Fig. 26. phase plane of sliding variable 1. 

Fig. 28 shows the relative lateral velocity (state 

variable 2). As shown in this Figure, the control variable 2 

in desired finite time goes to zero and the sliding variable 

2 reaches to sliding surface 02 S . Also with varying the 

value of parameter 
2 , we are able to adjust the time of 

zeroing sliding variable.  

Fig. 29 presents the phase plane obtained by using the 

proposed guidance law. The plots confirm the expected 

behavior of the sliding variable 2 and the phase plane 

converging to zero in a finite time. 

Fig. 30 shows the relative range in the end of 

engagement. It is clear that, with increasing the values of 

parameters the time of flight and intercepting with target 

is decreased. In other words, the time of zeroing relative 

range is decreased. Therefore, finite time stable guidance 

law is able to adjusting the time of intercept. 

Therefore, the finite time second order sliding mode 

controller (35) is able to eliminate chattering in control 

signal and finite time stabilizing the system (31) that leads 

to decreasing time of flight and improving the 

performance of guidance law. This controller is also 

robust against to uncertainty (target maneuvers 2tA ). 

 

Fig. 27. missile acceleration (control input 2) and target acceleration 

(uncertainty) with 
232221   . 

 

Fig. 28. relative lateral velocity (sliding variable 2) with different 

value for 
2  (

232221   ). 

 

Fig. 29. phase plane of sliding variable 2. 
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Fig. 30. relative range with different values for 
1  and 

2  (

131211   and 
232221   ) 

5. CONCLUSIONS 

In this paper, a new finite time second order sliding 

mode control is proposed. The finite time stability of this 

algorithm is proved using Lyapunov method. Applying 

this controller in nonlinear uncertain systems leads to 

producing a smooth control signal and improving the 

overall performance of system without estimation of 

uncertainties. It is demonstrated via simulation that the 

proposed algorithm has better performance than boundary 

layer method with high precision. 
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