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ABSTRACT: As the number of features in practical applications grows, the feature selection process 
becomes increasingly important. Since the feature selection problem is NP-hard, no exact algorithm can 
determine the optimal subset over a reasonable period of time. However, traditional feature selection 
methods are time-consuming and tend to get stuck in local optima. Unlike traditional search techniques, 
metaheuristics are more effective at exploring and exploiting the search domain because they use several 
operators. Besides these behaviors of metaheuristics, we present an improved Equilibrium Optimizer 
algorithm using the density of population and entropy operator, which has proven a good exploration 
ability to provide a promising candidate solution. After that, a new feature selection model is developed 
based on the improved Equilibrium Optimizer algorithm. K-nearest neighbors is used as an evaluator for 
the new solutions. In order to test the performance of the proposed algorithm, simulation experiments are 
conducted on a set of 14 standard test functions containing both unimodal and multimodal functions. To 
evaluate the effectiveness of the proposed algorithm, 15 UCI benchmark datasets and five metaheuristics, 
GA, CS, GSA, RDA, and BBA  are applied. The experimental results revealed the effectiveness of our 
approach in terms of accuracy performance for the feature selection process.
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1- Introduction
A pre-processing method like Feature Selection (FS) 

becomes an essential and challenging part of data mining 
when the volume of data increases significantly [1]. Machine 
learning tasks require feature selection to select a subset of 
essential features for optimizing models in terms of accuracy 
and generality [2]. An illustration of the feature selection 
diagram can be found in Fig. 1. There are three main types 
of feature selection methods: filter, wrapper, and embedded. 
By using a filter model, the relevancy of features is taken into 
account without using a learning algorithm. As a result, these 
methods are generally fast. According to this model, features 
are organized and evaluated according to information-
theoretical measures, and those with the highest ranks are 
selected. The wrapper approach evaluates a set of prominent 
features using a classifier. To determine which features are 
the most accurate, the wrapper model uses a given learning 
model to assess a subset of features. An embedded approach 
considers feature selection as a part of the machine-learning 
process.

Traditionally, optimization problems have been solved 
by deterministic mathematical methods, which suffer 
from one significant limitation: local optimization traps. 
Real-life optimization problems cannot be solved using 
these techniques, so stochastic optimization strategies 

are becoming increasingly popular [3]. Several practical 
real-world optimization problems have been solved using 
non-deterministic methods, also known as metaheuristic 
algorithms. For example, feature selection, engineering, 
medical, and economics are among the inheritors [4]. In 
solving optimization problems, metaheuristic algorithms are 
preferred over other methods due to four important factors. 
i) Simple ideas in nature inspired metaheuristic algorithms, 
which are easy to implement. These algorithms are also easy 
to learn. ii) Since these algorithms are flexible, they can be 
used to solve a variety of optimization problems without 
altering their structure. iii) Metaheuristic methods rarely 
require derivation. As a result, we don’t need to calculate the 
derivative of the search space to find the optimal solution. 
iv) The metaheuristic algorithm avoids local optimality in 
comparison with conventional methods [5]. According to 
the No Free Lunch theorem (NFL), no optimization method 
is suitable for every problem. A metaheuristic technique is 
therefore a promising research topic for solving feature 
selection problems. 

This study contributed the following points:
Present an improved version of EO based on the density 

of population and entropy operator to overcome the slow 
convergence rate and the entrapment in local optima problems 
and to achieve an effective and robust search mechanism.

Develop a new feature selection method using improved 
EO to locate the best feature subset.
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Evaluate the improved EO algorithm using 14 well-
known functions.

Compare the proposed feature selection approach with 
other well-known and recent meta-heuristic algorithms, 
Genetic Algorithm (GA), Cuckoo Search (CS), Gravitational 
Search Algorithm (GSA), Red Deer Algorithm (RDA), and 
Binary Bat Algorithm (BBA).

The rest of the paper is organized into the following 
sections: Section 2 presents a review of the related works. 
Section 3 describes the Equilibrium Optimizer. Section 4 
explains the improved EO structure. Section 5 explains the 
proposed method in FS. Section 6 illustrates the parameter 
setup and performance results. Finally, conclusions and 
future work are presented in Section 7.

2- Related Works
Metaheuristic algorithms are used extensively to select 

features, mainly due to their ease of application and high 
accuracy [6]. In recent years, optimization algorithms 
have been used to solve high-dimensional feature selection 
problems in many fields. Optimization algorithms enhanced 
classification accuracy and reduced selected features 
by enhancing their efficiency. Some of these works are 
Particle Swarm Optimization (PSO) [7], GA [7], GSA [8], 
and Bat Algorithm (BA) [9]. There are two steps in the 
search behavior of optimization algorithms: exploration 
and exploitation. An optimization algorithm searches the 
appropriate scopes of a search space during exploration and 
exploitation. This fine-tuning determines the goodness of an 
algorithm. The stochastic nature of these elements makes it 
difficult to compensate for them [10]. Table 1 summarizes 
some of the meta-heuristic algorithm-based work done in the 
feature selection area. 

Maleki et al. [11] used K-Nearest Neighbor (KNN) 
and GA for efficient feature selection to lower the dataset 
dimensions and enhance the classifier rate in exploring the 
step of patients’ disease. The best value for k is determined 
using a practical procedure to improve the algorithm’s 
accuracy. Huang and Wang [12] simultaneously optimized the 
parameters and feature subset without harming the Support 
Vector Machine (SVM) classification accuracy. A training 
process for SVM affects the classification accuracy by 
selecting kernel parameters. A GA-based approach improves 
classification accuracy dramatically over the Grid algorithm. 
SVMs have fewer input features.

Alotaibi [13] proposed a stock market model that includes 
some techniques like feature extraction and prediction. 
Additionally, the indexed data are computed using standard 
indicators like the Average True Range. Furthermore, 
stock movement is predicted using the selected features. 
Based on the optimized neural network, the final results 
are formulated. With the proposed Red Deer Adopted Wolf 
Algorithm (RDAWA), the training of Neural Networks (NN) 
can be made more accurate. Nagpal et al. [8] investigated 
a relatively new evolutionary computation method called 
Gravitational Search Algorithm (GSA) for feature selection. 
Due to the numerous features in medical data, efficient feature 
selection methods are required for disease prediction. In the 
proposed wrapper-based approach, the number of features 
is reduced and the prediction accuracy is improved by using 
GSA and KNN. Tarade et al. [14] proposed the Hybrid GSA 
(HGSA) method to solve the feature selection problem. To 
enhance exploitative and exploitative abilities, the authors 
applied GA operators (i.e., crossovers and mutations). The 
feature selection problems have been solved using several 
evolutionary algorithms. 

 
Fig. 1. Feature selection diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Feature selection diagram.
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3- Equilibrium Optimizer
The physical laws of nature are used to develop an 

Equilibrium Optimizer (EO). It uses the uncertain condition 
mass balance equation to track the closest nonreactive element 
concentration. In general, mass balance can be expressed as a 
first-order differential equation [15].
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which V is the control volume, C is the concentration 
of the control volume, dCV

dt
is the control volume changing 

speed, Q is the flow speed, Ceq is the concentration inside the 
control volume at an equilibrium state in which no generation 
is available, and G is the mass generation speed. A steady 
equilibrium state can be achieved when  dCV

dt
leaning toward 

zero, and Eq. (1) can be rearranged to solve for C as a function 
of t [15].
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In addition, λ = Q/V as the turn-over rate [1]. 
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where C0 and C are the concentration levels at t0 and t. 
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In Eq. (4), F plays an important role in balancing 
exploration and exploitation which is calculated as follows 
[1]:
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3- 1- Initialization
Like most meta-heuristic algorithms, EO commences the 

optimization process with the initial population. Based on the 
number of particles and dimensions, the initial concentrations 
are determined as follows [1]:

Table 1. Summary of different feature selection algorithms based on meta-heuristic.

Table 1. Summary of different feature selection algorithms based on meta-heuristic. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Authors Techniques Classifier Comments Domain 

(Maleki et al., 2021) 
GA 

Decision Tree, 
KNN 

 Lung cancer dataset: 1000 samples, 
each with 23 features 
 Dataset is classified into three 
levels low, medium, high 

 lung 
cancer/Medical 

(Huang and Wang, 
2021) 

GA, Grid 
Algorithm 

SVM  Classified using 10 k-fold cross-
validation 

 No specific domain 
 Tested on 11 
datasets 

(Alotaibi, 2021) RDA, GWO, 
RDAWA 

RF, SVM, 
Optimized 
Neural 
Network 

 Data for testing the proposed 
method was collected from three 
companies 
 The classifiers were trained with 
the extracted features. 

 Saudi Stock Market 

(Nagpal et al., 2017) GSA, PSO, 
GA 

KNN, CFS  3 datasets were used for the 
experiment 
 Accuracy increased after FS 

 Biomedical Data 

(Mafarja et., 2019) 
BGSA, 

HGSA, GWO, 
PSO, GA 

Decision Tree, 
KNN 

 Proposed GSA-based optimizer for 
the first time with evolutionary 
crossover and mutation schemas 
 Proposed methods merit in terms of 
exploitation and exploration 

 No specific domain 
 Tested on 18 
datasets 
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initial
iC is the initial concentration vector of the i-th particle, 

minC  and maxC  represents the minimum and maximum values 
for the dimensions, is a random vector in the interval of [0,1], 
and n is the number of particles as the population. In order to 
select equilibrium candidates, particles are estimated for their 
fitness functions.

3- 2-  Equilibrium Pool (Ceq)
Some equilibrium candidates are bound when the 

optimization process begins to provide a pattern for finding 
particles. There are five candidates based on experiments under 
varying problem situations. Thus, four of these candidates 
represent the best particles identified during optimization, 
and the fifth represents the mean of the other four. These four 
candidates help the EO have better exploration, and the fifth 
one helps it have better exploitation. It’s also possible to use 
any number of candidates in experiments, but we use five 
candidates and group them in a vector called equilibrium pool 
in this paper:
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3- 3- Exponential Term (F)
A reasonable balance between exploration and exploitation 

will be made possible with the exponential term. As a result, 
turnover rates are time-dependent and are subject to change, 
so they are treated as random numbers in the range [0, 1]. The 
formula is shown below [1]:
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F is a function of t and changes (decreases) with the 
number of iterations [1]:
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In Eq. (9), Iter is the current iteration and Max_Iter is 
the maximum iteration. Where a2 is the constant to manage 
exploration power. Parameter t0 is used to avoid convergence 
at local minima using slowing down the routine [1].
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So a1 handles the exploration abilities, r is a random 
number in the range of [0, 1] and the sign executes the 
direction of the search.

Eq. (10) takes place in Eq. (8):
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3- 4- Generation Rate (G)
As a result of the generation rate, the EO can explore the 

search domain more easily. In EO, the generation rate (G) is 
as follows [1]:
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The GCP is the generation rate control and is computed 
using Eq. (14). In Eq. (14), r1 and r2 are two random vectors 
in the range of [0, 1].

The updating rule of EO is as follows [1]:
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where F is supposed to be an exponential term, G is the 
generated rate, Ceq is a random candidate from the equilibrium 
pool, and V is a constant unit. Figure 2 shows the pseudo-
code for the EO algorithm. 

4- The Proposed Method (IMEO2)
Varzaneh et al. [16] proposed Improved Equilibrium 

Optimization (IMEO), which increases the exploration 
capability of the original EO by using entropy-based operators. 
The operation is based on chemistry-physics principles. By 
using this operator, they claim that the algorithm can be 
automatically explored and exploited. Hence, if an agent’s 
fitness does not improve after k consecutive generations, it 
may be stuck in local optima. It is possible to calculate the 
improvement of an agent by using the following formula:
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Defining the particle fitness at the time of (it) and (it - 
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Equilibrium Algorithm Pseudo Code 
Initialize the particle’s populations i=1,…,n 
Assign equilibrium candidates’ fitness a large number 
Assign free parameters a1=2; a2=1; GP=0.5; 
While Iter < Max_iter 
        For i=1: number of particles (n) 
        Calculate fitness of ith particle 
              If fit(

iC )  fit(𝐶𝐶𝑒𝑒𝑒𝑒 1) 
                      Change with 

iC  and fit (
1eqC ) with fit (

iC ) 
              Elseif     fit(

iC ) > fit(
1eqC ) & fit(

iC ) < fit(
2eqC ) 

                      Change 
2eqC  with 

iC  and fit (
2eqC ) with fit (

iC ) 
              Elseif     fit(

iC ) > fit(
1eqC ) & fit(

iC ) > fit(
2eqC ) & fit(

iC ) < fit(
3eqC ) 

                      Change 
3eqC  with 

iC  and fit (
3eqC ) with fit (

iC ) 
              Elseif     fit(

iC ) > fit(
1eqC ) & fit(

iC ) > fit(
2eqC ) & fit(

iC ) > fit(
3eqC ) & fit(

iC ) < fit( 4eqC ) 
                      Change 4eqC  with 

iC  and fit ( 4eqC ) with fit (
iC ) 

              Endif 
        Endfor 

    1 2 3 4( ) / 4ave eq eq eq eqC C C C C     
     Construct the equilibrium pool  , 1 2 3 4{ , , , , }eq pool eq eq eq eq aveC C C C C C  
    If (Iter > 1) => Accomplish memory saving 

    Assign 2( )
_(1 )

_

Itera
Max IterItert

Max Iter
                                     Eq. (9) 

        For i=1: number of particles(n) 
            Randomly choose one candidate from the equilibrium pool (vector) 
            Generate random vectors of 𝑟𝑟, 𝜆𝜆                                       Eq. (11) 
            Construct 1 ( 0.5)[ 1]tF a sign r e                                     Eq. (11) 
            Construct  1 2

2

0.5
0

r r GP
r GPGCP 
                                                   Eq. (14) 

            Construct 
0 ( )eqG GCP C C                                              Eq. (13) 

            Construct 
0G G F                                                               Eq. (12) 

            Update concentration   ( ). (1 )eq eq
GC C C C F F
V

        Eq. (15) 

        Endfor 
    Iter=Iter+1 
Endwhile 

 
Fig. 2. Pseudo code of EO algorithm [1]. 

 

 

 

 

Fig. 2. Pseudo code of EO algorithm [1].
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k) as fit (it) and fit (it - k), respectively. It is obvious if the 
value of IMP for some agent tends to zero (below epsilon), 
this agent is not capable of exploring new areas in the search 
space. As a result, the new position for this agent is:
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Where Cnew represents the agent’s new position and Cold 
represents its previous position. Ceq indicates the best position 
so far, and shift indicates how far it is from the current 
position. Based on the Eq. (18), we can determine the shift 
value.
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The lower bound and upper bound are determined by |LB| 
and |UB|, respectively.

Nevertheless, this approach can enhance the search ability 
of the agents, especially for unimodal functions (functions 
with a single global optima). It often fails to find global 
optima in multimodal functions (functions that contain more 
than one local optimum and one global optima). The best 
agent cannot escape a local optimum by changing position 
with an entropy-based operator. 

Figure 3 shows an example of using an entropy-based 
operator to solve a local optima problem for agent C1. 
The shift value changes the position of C1 only slightly, 
while the agent remains in local optima. To overcome the 

previous drawback, we propose a new Improved Equilibrium 
Optimization (IMEO2) based on a density-based population 
operator. According to this operator, if the average distance 
between all agents in local optima is smaller than a value, 
then the stuck agent (such as C1 in Fig. 3) will move toward 
a random agent in the search space. The average distance 
between agents and the stuck agent’s new position can be 
found in Eq. (19) and Eq. (20).
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In this case, N is the size of the population and Crand is a 
random agent in the search space.

5- Proposed Feature Selection Method
Figure 4 illustrates the steps involved in selecting features 

using IMEO2. The proposed IMEO2 seeks to identify the most 
informative set of features. Experimental results indicate that 
the IMEO2 algorithm is highly efficient and performs well.

The high efficiency of IMEO2 comes from its balancing 
strength in exploration and exploitation ability. The IMEO2 
algorithm updates concentrations by selecting a random 
solution from the equilibrium pool. Then, the IMEO2 can 
achieve the optimal solution while avoiding stuck in local 
optima using the exponential term (F) and generation rate 
(G) [17].  To balance the number of selected features in each 

 

Fig. 3. An example of entropy-based operator performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. An example of entropy-based operator performance.
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solution and the classification accuracy, the fitness function 
in Eq. (21) is used in the IMEO2 algorithm to estimate search 
agent’s performance.
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The definition of each parameter in Eq. (21) is listed here:
[0,1]α ∈ : constant to find a balance between 

classification and the number of reduced features.
 : Classification error rate of given classifier (KNN) for 

subset R
(1 )β α= − : Another constant which calculated based on 

R: Length of reduction features
N: Total number of features in the dataset
A fitness function is used to estimate whether a particular 

solution is a good one compared to other solutions. A 
classification process is efficient if the classification accuracy 
is high. In experiments, classification accuracy is crucial. 
Also, a wrapper approach based on the KNN classifier (where 
K= 5 [18]) is used to generate the best reduction.

6- Experimental Setup and Results
This section evaluates the performance of the proposed 

method using two series of experiments. The first experiment 

uses 14 benchmark functions to investigate the efficiency of 
the proposed algorithm (IMEO2). The second one evaluates 
the proposed feature selection method using six feature 
selection algorithms.

6- 1- Experimental setup
The proposed method has been implemented in Google’s 

Colab research environment, and all methods that have been 
compared to our method have been implemented and tested 
in the same environment. Python programming language and 
Py-FS by [18] have also been used to implement the code. 
Furthermore, each algorithm is executed 5 times, and also 
available RAM in Google’s Colab environment is 12 GB. 
(https://colab.research.google.com)

There are two categories of datasets used, small and 
medium. In order to test the method’s classification 
accuracy performance, we used 15 well-known datasets, the 
information of which can be found in Table 2. Table 3 shows 
the parameters used in the IMEO2 algorithm. 

Figure 5 shows the 15 datasets used along with the 
characteristics of each, i.e. the number of features and the 
number of samples in it.

In our experiment, n and population_size are set according 
to [19]. According to [18], features are selected based on 
accuracy weight. Table 3 shows the values of the provided 
method settings.

 
 

Fig. 4. Proposed feature selection framework 
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Table 2. Information of benchmark datasets.

 

 

 

Table 2. Information of benchmark datasets. 
 

No. Datasets Number of features Number of instances 

1 Iris 5 150 
2 Arrhythmia 279 452 
3 Ionsphere 35 351 
4 Breastcancer 11 699 
5 BreastEW 31 568 
6 HeartEw 14 270 
7 Exactly 14 1000 
8 Exactly2 14 1000 
9 Tic-tac-toe 10 958 
10 M-of-n 14 1000 
11 Digits 65 1797 
12 Madelon 501 2600 
13 Monk1 7 556 
14 Wine 14 178 
15 Zoo 17 101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Overview of the datasets used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Overview of the datasets used.
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6- 2- Experiment 1: Solving global optimization problems
We compare the performance of the proposed algorithm 

(IMEO2) with the original EO and IMEO [16] algorithms 
on 14 benchmark test functions. There are three types of 
functions: Unimolal (F1–F6), Multimodal (F7–F10), and 
Fixed-Dimensional (F11–F14). Tables 4-6 summarize these 
benchmark functions [20, 21].  

Figure 6 shows the box plot for different benchmark 
functions for related methods. Results obtained by running 
each method 30 times. The proposed IMEO2 has the best 

performance in F2, F5, and F6 and improves the result by 5%, 
10%, and 3.2% over the original EO. According to the broad 
box of IMEO in F2, F4, and F6, this algorithm cannot produce 
reliable results.  On F7, F8, F9, and F14, the proposed IMEO2 
has better performance than IMEO and improved the result 
by 14.6%, 12.3%, 3.1%, and 7.74%, while on F6 and F13, it 
matched the original EO’s result. A density-based population 
operator is one of the reasons for this superiority, which 
considers the situation of all agents along with the situation 
of each agent from the previous iteration. If we consider only 

Table 3. Parameter setting of the proposes method

 

 

 

Table 3. Parameter setting of the proposes method 
 

Parameter Value 

Maximum number of Iterations (n) 100 

Agents (population size) 10 

Number of neighbors in the KNN classifier 5 

Number of runs  5 

a1 2 

a2 1 

r ∈ [0, 1] 

GP 0.5 

pool size 4 

 

 

 

 

 

 

 

Table 4. Unimodal benchmark functions.
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Table 5. Multimodal benchmark functions.

 

Table 5. Multimodal benchmark functions. 
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Table 6. Multimodal benchmark functions with fixed dimension.
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Fig. 6. Best fitness values for various benchmark functions.(Continued)
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Fig. 6. Best fitness values for various benchmark functions.(Continued)
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the position of one agent at a point in search space from a 
previous iteration, it may be the best agent at that point and 
all the other agents have moved toward the local optimal 
point. In this case, it may not be necessary for the agents to 
move toward the best choice if the density is calculated at that 
point. In contrast, if local optima are dense, the density-based 
population operator enables agents to escape from them.

6- 3- Experiment 2: Feature selection using benchmark 
datasets

All results from experiments are reported in this section. 
We compare the IMEO2 method in terms of classification 
accuracy with other six state-of-the-art methods.

From Table 7, we see the efficiency of the IMEO2 
algorithm over the EO, GA, GSA, CS, BBA, and RDA 
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Fig. 6. Best fitness values for various benchmark functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 6. Best fitness values for various benchmark functions.

Table 7. Results of comparing based on the classification accuracy.

 

Table 7. Results of comparing based on the classification accuracy. 
 

No. Dataset IMEO2 EO GA GSA CS BBA RDA 

1 Iris 98.13 94.3332 96.6 100 100 100 100 

2 Arrhythmia 79.2592 75.1851 58.2417 62.6373 63.7362 63.7362 61.5384 

3 Ionsphere 90.285 89.9999 90.1408 90.1408 91.5492 84.5070 94.3661 

4 Breastcancer 97.129 92.9999 93.5714 93.5714 92.1428 98.57201 96.4285 

5 BreastEW 94.832 93.1578 94.7368 94.7368 95.614 92.9824 93.8596 

6 HeartEw 74.8147 74.4444 81.4814 81.4814 75.9259 74.0740 77.7777 

7 Exactly 99.7 91.8 69 69 69 69 69 

8 Exactly2 64.8 62.9 76 76 76 76 76 

9 Tic-tac-toe 79.9999 75.6249 65.1041 65.625 65.1041 73.9583 77.0833 

10 M-of-n 100 99.99 76.5 79 87 73.5 81 

11 Digits 90.337 81.337 95.5 94.4 95 93.3333 93.8888 

12 Madelon 57.661 53.9999 73.2692 80.9615 70.5769 68.6538 62.8846 

13 Monk1 99.818 99.818 72.3214 87.5 100 81.25 100 

14 Wine 88.1 84.4444 94.4 94.4 97.2 94.4444 97.2222 

15 Zoo 90.514 72 95.2380 95.2380 95.2380 95.2380 95.2380 
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algorithms. Also, it can be seen that the IMEO2 algorithm 
has good accuracy on the Iris (98.13%, 94.3332%, 96.6%, 
100%, 100%, 100%, 100%), Arrhythmia (79.2592%, 
75.1851%, 64.8352%, 58.2417%, 62.6373%, 63.7362%, 
63.7362%, 61.5384%), BreastCancer (97.129%, 92.9999%, 

93.5714%, 93.5714%, 92.1428%, 98.5720%, 96.4285%), 
M-of-n (100%, 99.99%, 76.5%, 79%, 87%, 73.5%, 81%), 
and Monk1 (99.818%, 99.818%, 72.3214%, 87.5%, 100%, 
81.25%, 100%) datasets respectively.

Figure 7 and Fig. 8 indicate the convergence curves of 

 
IMEO2 

 

 
EO 

 
GA 

 
GSA 

 
CS 

 
BBA 

 
RDA 

 
Fig. 7. Convergence curves of IMEO2, EO, GA, GSA, CS, BBA, and RDA (tested on BreastCancer dataset). 
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Fig. 8. Convergence curves of IMEO2, EO, GA, GSA, CS, RDA, and BBA (tested on Madelon dataset). 

 
Fig. 8. Convergence curves of IMEO2, EO, GA, GSA, CS, RDA, and BBA (tested on Madelon dataset).
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IMEO2, EO, GA, GSA, CS, RDA, and BBA for BreastCancer 
and Madelon, respectively. Figure 9 shows the classification 
accuracy test results of the IMEO2, EO, GA, GSA, CS, 
RDA, and BBA algorithms on the 15 datasets tested. 
According to Fig. 9, the IMEO2 algorithm performed better 
on the BreastCancer dataset against EO, GA, GSA, and on 
the Monk1 dataset against GA, GSA, and BBA. Also, the 
overall performance of the proposed IMEO2 is superior to 

all compared methods on Arrhythmia, Exactly, Tic-tac-toe, 
and M-of-n datasets. Also, according to Fig. 9, the genetic 
algorithm was less accurate in datasets with medium-
dimension. This performance discrepancy is due to a genetic 
algorithm defect in population loss due to the rare occurrence 
of premature convergence [22]. The CS algorithm also has 
low classification accuracy [22], and we can see that it 
performs worse than the IMEO2 in the Madelon, Digits, and 

 

 

Fig. 9. Diagrams of IMEO2, and other compared algorithms based on classification accuracy.(Continued)
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Fig. 9. Diagrams of IMEO2, and other compared algorithms based on classification accuracy.(Continued)
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Arrhythmia datasets. Since IMEO2 has suitable exploratory 
and exploitative search processes and randomly modifies the 
solutions.

Figure 10 shows the average classification accuracy of 
IMEO2, EO, GA, GSA, CS, RDA, and BBA algorithms 
over 15 datasets. As we can see the proposed algorithm 
IMEO2, outperforms the other 4 algorithms for accuracy rate 

in the form of IMEO2 (87.0253%), GA (82.1403%), GSA 
(84.3128%), BBA (82.6165%), and EO (82.7963%). 

In this experiment, we find that the IMEO2 algorithm is 
superior to the mentioned algorithms and has been able to 
have good results in terms of classification accuracy in the 
feature selection field.

 

 

Fig. 9. Diagrams of IMEO2, and other compared algorithms based on classification accuracy.(Continued)
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Fig. 10. Average classification accuracy of the IMEO2, GA, GSA, CS, BBA, RDA, and EO over 15 datasets. 
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Fig. 10. Average classification accuracy of the IMEO2, GA, GSA, CS, BBA, RDA, and EO over 15 datasets. 
Fig. 10. Average classification accuracy of the IMEO2, GA, GSA, CS, BBA, RDA, and EO over 15 datasets.
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7- Conclusion and Future works
In order to improve the problem-solving process, 

evolutionary algorithms were used because traditional 
algorithms were inefficient. Equilibrium Optimizer (EO) is 
a physics-based model that makes educated guesses about 
equilibrium states using dynamic source and sink models. 
This paper proposes an improved EO that enhances the 
capability to explore divergent areas based on density and 
entropy operators. The improved EO is used to solve the FS 
problem using wrapper methods for classification purposes. 
We perform two experimental series to investigate the 
performance of the improved EO method using ten benchmark 
functions and fifteen datasets with different properties. 
Results of experimental series 1 show that the improved EO 
algorithm provides superior results on most tests, especially 
when solving multimodal functions. Experimental series 2 
also shows that the improved EO is more accurate than other 
comparative algorithms (i.e., EO, GA, GSA, CS, RDA, and 
BBA) at selecting the optimal subset of features. For future 
work, the EO method can be tested on different types of 
datasets. In addition, the efficiency of the proposed approach 
should be evaluated with other classifiers (e.g., artificial 
neural networks). Finally, we aim to apply other evolutionary 
methods to deal with feature selection and parameter tuning.
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