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Abstract 

One of the most important applications of multi-objective optimization is adjusting parameters of 

practical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled 

sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic 

example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm Optimization 

(MOPSO) algorithm is implemented for optimizing the DSMC parameters in order to decrease the 

normalized angle error of the pole and normalized distance error of the cart, simultaneously. The results of 

simulation are presented which consist of results with and without disturbances. The proposed Pareto front 

for the DSMC problem demonstrates that the Ingenious-MOPSO operates much better than other multi-

objective evolutionary algorithms. 
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1. INTRODUCTION 

Particle Swarm Optimization (PSO), first introduced 

by Kennedy and Eberhart, is one of the modern heuristic 

algorithms [1]. It was developed through simulation of 

simplified social systems, and has been found to be robust 

in solving nonlinear optimization problems [2]. The PSO 

technique can generate a high quality solution with short 

calculation time and a more stable convergence 

characteristic compared to other evolutionary methods 

[3,4].  

In the recent years, several approaches have been 

proposed to extend the PSO algorithm to deal with multi-

objective optimization problems. For instance, a dynamic 

neighborhood strategy is used to locate the Pareto front 

[5]. In [6], the dominated tree approach is used to select 

global and personal best position for each particle. In [7], 

The Sigma method is implemented to find global best 

positions. The parallel implementation of vector evaluated 

PSO is investigated in [8]. In [9], a diversity parameter 

and time variant inertia weight and acceleration 

coefficients are used. In [10], cluster operation is used to 

avoid the excessive retention of similar particles. Also, 

proportional distribution and jump improved operation 

mechanism are used to maintain the diversity and the 

solution searching abilities. In [11], preference order is 

used to design some Pareto solutions superior to others 

instead of dominance method when the size of the non-

dominated solution set is very large and a new updating 

equation for the velocity is introduced. In [12], the idea of 

 𝜀𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛  is used to fix the size of archive. The 

influence of this method in comparison to the clustering 

method has been studied. In [13], an extra objective is 

added to the 𝜀-dominance approach preserve some 

solutions which are normally lost when using original 𝜀-

dominance technique. The 𝜀 − dominance  approach is 

applied not only on PSO methods, but also on other 

evolutionary algorithms such as genetic algorithms. For 

example, this approach is used to replace the crowding 

distance assignment approach in NSGAII [14]. The 

authors previously proposed adaptive  𝜀𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛  to 

retain more leaders in the archive in the initial iterations 

and this increases the convergence of PSO algorithm [15]. 

In [16], a new fuzzy elimination technique is proposed to 

prune the archive of the non-dominated solutions. In this 

reference, the proposed algorithm is aimed at increasing 

the rate of convergence and the diversity of solutions in 

the population together by four easy techniques: (1) use of 

new  𝜀𝐹𝑢𝑧𝑧𝑦 for pruning archive; (2) using Sigma method 

[7] for finding personal best positions of particles; (3) use 

a leader selection technique based on density measures; 

and (4) use of turbulence operator. 

In the existing literature, several previous works have 

considered the evolutionary algorithms for control design. 

For an overview of evolutionary algorithm in control 

engineering, Reference [17] is appropriate. In particular, 

pole placement for designing a discrete-time regulator for 

the single-input single output plant [18] and for a classical 

observer-based feedback controller [19] was formulated as 

a multi-objective optimization problem and solved with 

genetic algorithms. More recently, PSO was used to tune 

the linear controller gains for optimal design of PI 

controllers for doubly fed induction generators driven by 

wind turbines [20] and for optimal design of PID 

controller in AVR system [21]. These works have shown 

that PSO is a fast and reliable tool for control 

optimization, and also outperforms other evolutionary 

algorithms. 

The inverted pendulum is one of the most commonly 

studied systems in the control area that is a classic 

example of an inherently unstable system. It is an 

excellent test bed for learning and testing various control 

techniques. There are many control techniques that have 

been used to investigate the control behaviors of an 

inverted pendulum. Sliding mode control technology is 

also used to stabilize the inverted pendulum due to its 

inherent robustness with respect to plant model 

uncertainty and external disturbance which are 

unavoidable in the environment. It is very important to 

note that for design of the sliding mode controller, the 

determination of the sliding surface parameters is a 

significant problem. This point is very crucial for the 

performance of the control system [22]. This problem can 

be solved using evolutionary optimization techniques [23].  

Sliding mode controller is a powerful robust control 

strategy to treat the model uncertainties and external 

disturbances, provided that the bounds of these 

uncertainties and disturbances are known [24,25]. In [26], 

the parameters of switching function and exponential 

reaching law of the sliding mode controller for an inverted 

pendulum system are optimized with a modified single 

objective particle swarm optimization. In [27], two 

decoupled sliding mode control configurations have been 

designed for a scale model of an oil platform supply ship 

while the single objective genetic algorithm is used for 

optimization. In [28], multiobjective genetic algorithm is 

implemented for Pareto design of decoupled sliding-mode 

controllers for nonlinear systems. In [29], a novel MOPSO 

is applied for Pareto optimal design of the decoupled 

sliding mode controller for an inverted pendulum system 

and its stability is simulated via the Java programming. 

The most distinguishing characteristic between [28,29] 

and this work is the type of the multi-objective 
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optimization algorithm employed for Pareto design of the 

controller. In other words, in this work, an intelligent 

decoupled sliding mode control scheme based on an 

improved multi-objective particle swarm optimization is 

proposed. Using this optimization algorithm, the 

important parameters of the decoupled sliding mode 

controller are optimized to decrease the normalized angle 

error of the pole and normalized distance error of the cart, 

simultaneously. The results obtained from this study 

illustrate the benefits of using the Ingenious-MOPSO to 

optimize the decoupled sliding mode control for an 

inverted pendulum system.  

2. PRELIMINARIES 

A. Particle Swarm Optimization 

Particle swam optimization is a population-based 

evolutionary algorithm and is similar to other population 

based evolutionary algorithms. PSO is motivated by the 

simulation of social behavior instead of survival of the 

fittest [1]. Although originally adopted for balancing 

weights in neural networks, PSO soon became a very 

popular global optimizer, mainly in problems in which the 

decision variables are real numbers [30]. 

In PSO, each candidate solution is associated with a 

velocity [30]. The candidate solutions are called particles 

and the position of each particle is changed according to 

its own experience and that of its neighbors (velocity). It 

is expected that the particles will move towards better 

solution areas. Mathematically, the particles are 

manipulated according to the following equations. 
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 denote the position and velocity  

of particle i, at time step t. ]1,0[, 21 rr  are random values. 

𝐶1 is the cognitive learning factor and represents the 

attraction that a particle has toward its own success. 𝐶2 is 

the social learning factor and represents the attraction that 

a particle has toward the success of the entire swarm. W is 

the inertia weight which is employed to control the impact 

of the previous history of velocities on the current velocity 

of a given particle. The personal best position of the 

particle i is 
ipbestx



 and gbestx


 is the position of the best 

particle of the entire swarm. Inertia weight is used to 

balance the global and local search ability.  

The inertia weight has characteristics that are 

reminiscent of the temperature parameter in the simulated 

annealing [3]. A large inertia weight facilitates a global 

search while a small inertia weight facilitates a local 

search. By changing the inertia weight dynamically, the 

search ability is dynamically adjusted. Experimental 

results indicated that the linearly decreasing inertia weight 

over the iterations improve the performance of PSO [31]. 

With a large value of 𝐶1  and a small value of 𝐶2, particles 

are allowed to move around their personal best position (

ipbestx


). With a small value of 𝐶1  and a large value of 𝐶2, 

particles converge to the best particle of the entire swarm (

gbestx


). From the results, it was observed that best 

solutions were determined when 𝐶1 is linearly decreased 

and 𝐶2 is linearly increased over the iterations [32]. 

Hence, in this paper, the following linear formulation for 

inertia weight and learning factors are used. 

𝑊 = 𝑊1 − (𝑊1 − 𝑊2) × (
𝑡

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)                (3) 

𝐶1 = 𝐶1𝑖 − (𝐶1𝑖 − 𝐶1𝑓) × (
𝑡

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)               (4) 

𝐶2 = 𝐶2𝑖 − (𝐶2𝑖 − 𝐶2𝑓) × (
𝑡

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)               (5) 

where 𝑊1 and 𝑊2 are the initial and final values of the 

inertia weight, respectively. 𝐶1𝑖 and 𝐶2𝑖 are the initial 

values of the learning factors 𝐶1 and 𝐶2, respectively. 𝐶1𝑓 

and 𝐶2𝑓 are the final values of the learning factors 𝐶1 and 

𝐶2, respectively. 𝑡 is the current iteration number and 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is the maximum number of 

allowable iterations. 

B. Multi-Objective Optimization Definitions 

Multi-objective optimization which is also called 

multi-criteria optimization or vector optimization has been 

defined as finding a vector of decision variables satisfying 

constraints to give acceptable values to all objective 

functions [33]. It could be introduced as find 
*X  to 

optimize ( )F X , therefore; is the vector of design 

variables and is the vector of objective functions. Such 

multi-objective minimization based on Pareto approach 

can be conducted using some definitions [34]: 

 Definition of Pareto dominance: A vector �⃗⃗� =

[ 𝑢1, 𝑢2, … , 𝑢𝑛], is dominance to vector 

],...,,[ 21 nvvvV 


 (denoted by VU





) if and only if 

    jjii vunjvuni  :,...,2,1,,...,2,1  
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 Definition of Pareto optimality: A point *X  

(Ω is a feasible region in nR ) is said to be Pareto 

optimal (minimal) if and only if there is not X  

which is dominance to *X . Alternatively, it can be 

readily restated as 

)()(:},..2,1{,, ** XfXfkiXXX ii 
 

 Definition of Pareto set: For a given multi-

objective optimization problem, a Pareto set 
*P  is a 

set in the decision variable space consisting of all the 

Pareto optimal vectors 

𝑃∗ = {𝑋 ∈ 𝛺| ∄𝑋′ ∈ 𝛺: 𝐹(𝑋′)  F(X)}. 

 Definition of Pareto front: For a given multi-

objective optimization problem, the Pareto front 

*PT  is a set of vectors of objective functions 

which are obtained using the vectors of decision 

variables in the Pareto set 
*P , that is 

         *
21

* :,...,, PXXfXfXfXFPT k 

. 

C. Sliding And Decoupled Sliding Mode Control 

Sliding mode control has been widely applied to the 

robust control of nonlinear systems [35]. In this section, 

the general concepts of sliding mode control for a second 

order dynamic system is discussed. Suppose a non-linear 

system is defined by the general state space equation: 

�̇� = 𝑓(𝑥, 𝑢, 𝑡)                                                                   (6) 

where 𝑥𝜖𝑅𝑛 is the state vector, 𝑢𝜖𝑅𝑚  is the input vector, 

𝑛 is the order of the system and 𝑚 is the number of inputs. 

Then the sliding surface  𝑠(𝑒, 𝑡) is given by: 

𝑠(𝑒, 𝑡)={𝑒: 𝐻𝑇𝑒 = 0}                                                       (7) 

where 𝐻𝜖 𝑅𝑛  represents the coefficients or slope of the 

sliding surface.  Here, 

𝑒 = 𝑥 − 𝑥𝑑                                                                       (8) 

is the negative tracking error vector. 

Usually a time-varying sliding surface 𝑠(𝑡) is simply 

defined in the state-space 𝑅𝑛  by the scalar equation, given 

by 

𝑠(𝑒, 𝑡) = (
𝑑

𝑑𝑡
+ λ)

𝑛−1

𝑒 = 0                                           (9) 

where λ is a strictly positive constant that can also be 

explained as the slope of the sliding surface. For instant, if 

𝑛 = 2 (for a second order system)  

𝑠 = �̇� + λ𝑒                                                                     (10) 

And hence, 𝑠 is a weighted sum of the position and 

velocity error. The n
th

-order tracking problem is now 

being replaced by a first-order stabilization problem in 

which the scalar 𝑠 is to be kept at zero by a governing 

reaching condition. By choosing Lyapunov function 

 𝑉(𝑥) =
1

2
𝑠2, the following equation can guarantee the 

reaching condition [36]. 

 �̇�(𝑥) = 𝑠�̇� < 0                                                            (11) 

   It can be seen that the sliding mode of the system 

response would be chatter along the 𝑠 = 0.  From 

Equation (11), the existence and convergence condition 

can be re-written as: 

𝑠�̇� ≤ −𝜂│𝑠│                                                                 (12) 

This equation permits a non-switching region. Here,  𝜂 

is strictly positive constant, its value is usually chosen 

based on some knowledge of disturbances or system 

dynamics in terms of some known amplitudes.  

In this control method, by changing control law 

according to certain predefined rules which depend on the 

position of the error states of the system with respect to 

sliding surfaces, the states are switched between stable 

and unstable trajectories until they reach the sliding 

surface. 

It can be shown that the sliding condition of Equation 

(11) is always satisfied by: 

𝑢 = 𝑢𝑒𝑞 − 𝑘 𝑠𝑔𝑛(𝑠)                                                     (13) 

where 𝑢𝑒𝑞  is called equivalent control input which is 

obtained by �̇� = 0 and 𝑘 is a design parameter or a 

function of 𝑥(𝑡)  such that 𝑘 =  𝑘(𝑥) and 𝑘 ≥ 𝜂. 

The discontinuity in control law is the result of 𝑠𝑔𝑛 

function. This function makes the high frequency 

chattering in the control command. By properly defining a 

thin boundary layer around the sliding surface as: 

𝐵(𝑡) = {𝑥; |𝑠(𝑥)| ≤ Ф}                                                (14) 

and therefore smoothing the discontinuity in control 

law across the boundary layer, the chattering can be 

eliminated. Linear interpolation across the boundary layer 

is one method for removing the discontinuous portion of 

control law. This is accomplished by defining a boundary 

layer of thickness Ф and replacing function 𝑠𝑔𝑛 with the 

function 𝑠𝑎𝑡 defined as follow and shown in Figure 1. 

𝑠𝑎𝑡 (
𝑆

Ф
) = {

𝑠𝑔𝑛 (
𝑆

Ф
)       𝑖𝑓 |

𝑆

Ф
| ≥ 1

(
𝑆

Ф
)       𝑖𝑓 |

𝑆

Ф
| < 1

                       (15) 
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The aim of sliding mode control approach is to define 

asymptotically stable surfaces such that all system 

trajectories converge to these surfaces and slide along 

them until achieving the origin at their intersection [37]. 

Furthermore, the basic idea of decoupled sliding mode 

control is to design a control law such that the single input 

𝑢 simultaneously controls the two subsystems to 

accomplish the desired performance. 

 

Fig. 1. Definition of function 𝑺𝒂𝒕 (
𝑺

Ф
) to eliminate the discontinuity 

in control law. 

 

To achieve this goal, the following sliding surfaces are 

defined: 

𝑠1(𝑥) = 𝜆1(𝑥2  −  𝑥2𝑑 −  𝑧) + 𝑥4 − 𝑥4𝑑 =  0             (16a) 

𝑠2(𝑥) = 𝜆2(𝑥1 − 𝑥1𝑑)+𝑥3−𝑥3𝑑 =  0                          (16b) 

Here, 𝑧 is a value proportional of 𝑠2 with respect to a 

proper range from 𝑥2.  

𝑢 1 = �̂�1 − 𝐺𝑓1𝑠𝑎𝑡(𝑠1(𝑥)𝑏2(𝑥) 𝐺𝑠1 ), 𝐺𝑓1 , 𝐺𝑠1 > 0      (17) 

with 

�̂�1 = −𝑏1
−1(𝑥)(𝑓2(𝑥) − �̈�2𝑑 + 𝜆1𝑥4 − 𝜆1�̇�2𝑑  )            (18) 

So, let the control law for Equation (16b) be a sliding 

mode mimicking a sliding mode with boundary layer: 

𝑧 = 𝑠𝑎𝑡(𝑠2 𝐺𝑠2)𝐺𝑓2  0 < 𝐺𝑓2 < 1                                  (19) 

where 𝐺𝑠2 represents the inverse of the width of the 

boundary layer to 𝑠2, 𝐺𝑓2
 transfers 𝑠2 to the proper range 

of 𝑥2 [38]. 

D. Inverted Pendulum System  

In this section, a model of an inverted pendulum is 

investigated. A pole, hinged to a cart moving on a track, is 

balanced upwards by motioning the cart via a DC motor. 

Moreover, the cart has to track a varying reference 

position (Figure 2). The state vector, 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
𝑇, 

is the system observable state vector. It includes the cart 

horizontal distance from the track centre, the pole angular 

distance from the upwards equilibrium point and their 

derivatives, respectively. The force applying on the cart 

may be expressed as 𝐹 = 𝛼𝑢, where 𝑢 is the limited motor 

supply voltage. The mathematical model of the system is:  

{

�̇�1 = 𝑥3

�̇�2 = 𝑥4

�̇�3 = 𝑓1(𝑥) + 𝑏1(𝑥)𝑢

�̇�4 = 𝑓2(𝑥) + 𝑏2(𝑥)𝑢

                                                  (20)  

where 

𝑓1(𝑥) =
𝑎(−𝑇𝑐−µ𝑥4

2 sin 𝑥2)−𝑙 𝑐𝑜𝑠(𝑥2)(µ𝑔 sin 𝑥2−𝑓𝑝𝑥4)

𝐽+µ𝑙𝑠𝑖𝑛2𝑥2
           (21) 

𝑏1(𝑥) =
𝑎𝛼

𝐽+µ𝑙𝑠𝑖𝑛2𝑥2
                                                         (22)  

𝑓2(𝑥) =
𝑙 𝑐𝑜𝑠(𝑥2) (−𝑇𝑐−µ𝑥4

2 sin 𝑥2)+µ𝑔 sin 𝑥2−𝑓𝑝𝑥4

𝐽+µ𝑙𝑠𝑖𝑛2𝑥2
               (23) 

 𝑏2(𝑥) =
lcosx2α

J+µlsin2x2
                                                         (24) 

that 𝑙 =
𝐿𝑚𝑝

2(𝑚𝑐+𝑚𝑝)
, 𝑎=𝑙2 +

𝐽

𝑚𝑐+𝑚𝑝
 and µ=(𝑚𝑐 + 𝑚𝑝)𝑙.  

The cart and pole masses are respectively 𝑚𝑐 and 𝑚𝑝, 

𝑔 represents the gravity acceleration, L is half the pole 

length, 𝐽 is the cart and pole overall moment of inertia 

with respect to the system centre of mass, 𝑓𝑝 is the pole 

rotational friction coefficient and 𝑇𝑐  is the horizontal 

friction acting on the cart, which is a nonlinear function of 

the cart speed 𝑥3 . Note that in Equation (20) 𝑏1(𝑥) and 

𝑏2(𝑥) are bounded. 

 

 

Fig. 2. The structure of an inverted pendulum system. 

3. MULTI-OBJECTIVE PARTICLE SWARM 

OPTIMIZATION 

In this paper, a new MOPSO namely Ingenious-

MOPSO introduced in [16] will be applied to find the 

Pareto frontier of non-commensurable objective functions 
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for the optimal design of the decoupled sliding mod 

control of the inverted pendulum system. The details of 

the algorithm are introduced as the following. 

A. Global Best Position 

In [16], a leader selection technique based on density 

measures was described. In fact, a neighborhood radius 

odneighborhoR  is defined for all non-dominated solutions. 

Two non-dominated solutions are neighbors if their 

Euclidean distance (measured in the objective domain) 

between them is less than odneighborhoR . Using this 

definition, the number of neighbors of each non-

dominated solution is calculated and the particle which 

has the fewer neighbors is preferred as the leader. 

B. Personal Best Position 

Via choosing a good technique for finding 
ipbestx



 
for 

particle i, the diversity within the swarm is maintained. 

Introduced approach in [7] (named Sigma method) is 

implemented to find the personal best position of the 

particle [16].  

C. Turbulence Operator 

In order to avoid being trapped in local minima and 

have the opportunity to discover other positions, the 

turbulence operator is used [16]. For this purpose, N 

particles of the population are randomly replaced by the 

new generated positions. 

𝑥 𝑖(𝑡) = 𝑥 𝑚𝑖𝑛(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑥 𝑚𝑎𝑥 − 𝑥 𝑚𝑖𝑛)                 (25) 

where 𝑟𝑎𝑛𝑑 is a random number which generated 

uniformly in the interval [0,1] and 𝑥 𝑚𝑎𝑥 and  𝑥 𝑚𝑖𝑛   are 

upper and lower bounds of the search space. It is proposed 

in [16] that 𝑁 = 𝑃𝑚 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 that 𝑃𝑚 is 

the probability of the turbulence operator and here 

considered as  
5

𝑡
. 

D. Fuzzy Elimination Technique 

The fuzzy elimination technique proposed in [16] is 

used to prune the archive. In this approach, each particle 

in the archive has an elimination radius equal to Fuzzy  

and if its Euclidean distance (in the objective function 

space) with another particle is less than Fuzzy , then one of 

them will be omitted. 

E. Details Of The Multi-Objective Algorithm 

The Ingenious-MOPSO algorithm is briefly described 

in the following. Initially, the population should be 

randomly generated and the inertia weight, the learning 

factors, and turbulence probability would be assigned. In 

the each iteration, after calculation of the fitness values of 

all particles, the archive,
ipbestx



 and gbestx


 
would be 

updated. Then, for each particle, a random number 

]1,0[  would be allocated. If a particle has 

 ty probabiliturbulence  then a new particle 

will be produced by the turbulent operator. Other particles 

that are not selected for turbulent operation will be 

enhanced by PSO. This cycle should be repeated until 

achieving the maximum iteration criterion.  

4. OPTIMAL DECOUPLED SLIDING MODE CONTROL 

In fact, the heuristic sliding parameters are required to 

be chosen properly. Here, this problem is solved via 

Ingenious-MOPSO and these results are compared with 

three prominent algorithms. 

The performance of a controlled closed loop system is 

usually evaluated by variety of goals [39-40]. In this 

paper, normalized angle error of the pole and normalized 

distance error of the cart are considered as the objective 

functions. These objective functions have to be 

minimized, simultaneously. 

The vector [𝐺𝑓1
,𝐺𝑠1

, 𝜆1, 𝐺𝑓2
, 𝐺𝑠2

, 𝜆2] is the vector of 

selective parameters (design variables) of sliding mode 

control. The regions of the design variables are as 𝐺𝑓1  , 𝐺𝑠1  

and 𝜆1belong to [0,10] and 𝐺𝑓2 , 𝐺𝑠2 and 𝜆2 belong to [0,1]. 

When solving proposed multi-objective problem, the 

population size is set at 100 and also, the maximum 

iteration is set at 200. 

The initial values for the inverted pendulum system 

are as following:  𝑥1(0) = 0, 𝑥2(0) =
𝜋

6
, 𝑥3(0) =

0, 𝑥4(0) = 0. The system parameters and constants used 

in simulation are given in Table 1. When the multi-

objective optimization algorithms are applied to this 

problem, a Pareto front of normalized angle error of the 

pole and normalized distance error of the cart would be 

achieved that is demonstrated in Figure 3. Although the 

performances of all algorithms are competitively good 

over this problem, the most interesting result is that the 

proposed algorithm has more uniformity and diversity. In 

Figure 3, points A and C stand for the best normalized 

angle error of the pole and normalized distance error of 

the cart, respectively. 

It is clear from Figure 3 that all the optimum design 

points in the Pareto front are non-dominated and choosing 

a better value for any objective function in the Pareto front 

would cause a worse value for another objective. The 

corresponding decision variables (vector of sliding-mode 

control parameters) of the Pareto front shown in Figure 3 
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are the best possible design points. Point C could be a 

trade-off optimum choice when considering minimum 

values of both of the normalized angle error of the pole 

and normalized distance error of the cart. Design variables 

and objective functions corresponding to the optimum 

design points A, B, and C are illustrated in Table 2. The 

time response of these optimum design points are shown 

in Figures 4 and 5. Also, this problem is carried out with 

disturbance (a unit impulse torque is applied to the pole in 

𝑇𝑖𝑚𝑒 = 10 𝑆). The simulation results with disturbance 

are shown in Figures 6 and 7 that demonstrate the 

effectiveness and robustness of the proposed strategy to 

handle disturbances.  

TABLE 1. THE INVERTED PENDULUM PARAMETERS. 

The mass of the pendulum 𝑚𝑝 0.5 𝑘𝑔 

The mass of the cart 𝑚𝑐 2 𝑘𝑔 

The half length of the pendulum 𝐿 0.5 𝑚 

The inertia moment of the cart and pendulum 𝐽 0.4 𝑘𝑔 𝑚2 

The friction constant of the pendulum 𝑓𝑝 0.1 

The friction constant of the cart 𝑇𝑐 0.25 

The gravity acceleration 𝑔 9.81 
𝑚

𝑠2
 

The force coefficient 𝛼 3 

  

Fig. 3. The obtained Pareto fronts by using Sigma method [7], 

modified NSGAII [14], MATLAB’s Toolbox MOGA and 

Ingenious-MOPSO for optimal decoupled sliding mode control 

design of the inverted pendulum system. 

 

Fig. 4. Simulations of the cart position correspond to the optimum 

design points A, B, and C shown in the Pareto front. 

 The objective functions and their associated design 

variables for the optimum points of Figure 3. 

C B A Optimum design point 

9.137

× 10−1 

5.553

× 10−1 

4.100

× 10−1 

Normalized angle error of 

the pole 

1.128

× 10−1 

3.186

× 10−1 

9.905

× 10−1 

Normalized distance error 

of the cart 

9.621

× 100 

9.720

× 100 

9.816

× 100 
Design variable 𝐺𝑓1 

9.148

× 100 

9.532

× 100 

9.122

× 100 
Design variable 𝐺𝑠1  

1.432

× 100 

1.392

× 100 

1.346

× 100 
Design variable 𝜆1 

9.997

× 10−1 

9.997

× 10−1 

9.996

× 10−1 
Design variable 𝐺𝑓2 

1.790

× 10−1 

1.914

× 10−1 

1.979

× 10−1 
Design variable 𝐺𝑠2  

5.942

× 10−1 

2.178

× 10−1 

4.296

× 10−3 
Design variable 𝜆2 

 

 

Fig. 5. Simulations of the pole angle correspond to the optimum 

design points A, B, and C shown in the Pareto front. 
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Fig. 6. Simulations of the cart position with a unit impulse 

disturbance correspond to the optimum design points A, B, and C 

shown in the Pareto front. 

 

Fig. 7. Simulations of the pole angle with a unit impulse disturbance 

correspond to the optimum design points A, B, and C shown in 

the Pareto front. 

5. CONCLUSION 

In this paper, the decoupled sliding mode technique is 

proposed for stabilising an inverted pendulum system. 

Choice of a suitable combination of the controller 

parameters is critical for obtaining a satisfactory 

behaviour. Thus, different multi-objective optimization 

methods are employed in order to optimize the decoupled 

sliding mode controller parameters regarding to error of 

position and angle simultaneously. Comparison among 

Pareto optimal fronts obtained from these methods 

demonstrated that the Ingenious-MOPSO out performs 

others. 
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