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ABSTRACT  

Time-delays are important components of many dynamical systems that describe coupling or 

interconnection between dynamics, propagation or transport phenomena, and heredity and competition in 

population dynamics. The stabilization with time delay in observation or control represents difficult 

mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of 

closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small 

time delay there exists in observation. In this paper a new method for eigenvalue assignment of discrete-time 

linear systems with state and input time-delays by static output feedback matrix is presented. The main result 

is an iterative method that only requires linear equations to be solved at each iteration. In this scheme, first a 

linear delayed system by defining an augmented vector is changed to standard form, then output feedback 

matrix K is calculated by inverse eigenvalue problem. We investigate all types of delays in the states, inputs 

or both for discrete – time linear systems. A simple algorithm and an illustrative example are presented to 

show the advantages of this new technique. 
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1. INTRODUCTION 

In many physical and biological phenomena, the rate 

of variation in the system state depends on past states. 

This characteristic is called a delay or a time delay, and a 

system with a time delay is called a time-delay system. 

Time delay phenomena were first discovered in biological 

systems and were later found in many engineering 

systems, such as mechanical transmissions, fluid 

transmissions, metallurgical processes, and networked 

control systems. They are often a source of instability and 

poor control performance. 

Time delays commonly occur in many mechanical and 

electrical systems in the path between system inputs and 

system output and are considered as a major source of 

instability and poor performance of a system. Time delays 

can include measurement delays, transmission delays and 

calculation delays [4]. 

Time-delay systems have attracted the attention of 

many researchers because of their importance and 

widespread occurrence. Basic theories describing such 

systems were established in the 1950s and 1960s; they 

covered topics such as the existence and uniqueness of 

solutions to dynamic equations, stability theory for trivial 

solutions, etc. That work laid the foundation for the later 

analysis and design of time-delay systems. 

The robust control of time-delay systems has been a 

very active field for the last 20 years and has spawned 

many branches, for example, stability analysis, 

stabilization design, H  control, passive and dissipative 

control, reliable control, guaranteed-cost control, H  

filtering, Kalman filtering, and stochastic control. 

Regardless of the branch, stability is the foundation. So, 

important developments in the field of time-delay systems 

that explore new directions have generally been launched 

from a consideration of stability as the starting point. 

Stability is a very basic issue in control theory and has 

been extensively discussed in many monographs. 

Research on the stability of time-delay systems began in 

the 1950s, first using frequency-domain methods and later 

also using time-domain methods. Frequency-domain 

methods determine the stability of a system from the 

distribution of the roots of its characteristic equation or 

from the solutions of a complex Lyapunov matrix function 

equation. 

Time-delay in the feedback loop of control systems 

often leads to instability or poor performance of the 

system, therefore, eigenvalue placing of delayed systems 

is a crucial problem in modern control theory. Classical 

eigenvalue placement techniques of ordinary differential 

equations cannot be applied for delayed systems, since the 

number of eigenvalues to be controlled is much larger 

than the degrees of freedom in the controller. Although, 

complete eigenvalue placement is usually not possible for 

delayed systems, finding the optimal control parameters 

that result in the smallest spectral radius is still a difficult 

task. 

Since the time-delay systems have important rule in 

static sciences, many researchers have studied and 

proposed various methods of eigenvalue assignment for 

this systems. Initial works for input time-delay was done 

by Kurzweil in 1963. Koepcke, later introduced the 

method of augmention of the state vector for time-delayed 

systems in 1965 and after him, a number of researchers 

have used Koepcke's technique for the control of these 

systems. As example, a survave of robustness of the 

eigenvalue assignment with output feedback matrix was 

done by Li (2001). Dong and Wei (2012) investigated 

stabilizatin and Determined feedback matrix in linear and 

nonlinear discrete time-delay systems. Li (2000) 

converted the output feedback eigenvalue assignment 

problem to a more general matrix inverse eigenvalue 

problem and then obtained solutions by solving a system 

of bilinear equations using Newton type algoritms. Xia, 

Liu, Shi, Rees, and Thomas (2007) investigated the 

stability of discrete-time systems with a constant delay by 

using a lifting method. Based on the scaled small gain 

theorem, new stability criteria were proposed in the paper 

(Li & Gao, 2011) in terms of linear matrix inequalities in 

combination with an approximation on the state delay. 

 Linear multivariable discrete-time systems with time-

delays fall into three categories. The first category 

comprises systems in which the states are delayed by the 

same or different amounts, and are referred to as state-

delayed systems; the second category comprises systems 

in which all the inputs are delayed by the same or different 

amount to an integer sub-multiple of the time-delay, and 

are referred to as input-delayed systems. The third 

category comprises systems in which the states and inputs 

are delayed by the same or different amounts. in this 

paper, we introduce a new method of eigenvalue 

assignment for all tree cases of the time delay system and 

describe them in three items, separately. 

The aim of this research is to construct output 

feedback matrix for augmented system so that the closed-

loop system has the desirable and prescribed eigenvalues. 

Karbassi and Tehrani (2002) have extended the 

method of Karbassi and Bell (1993) and introduced a new 

technique for the parameterizations of state feedback 
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controllers in eigenvalue assignment. It has been shown 

that a set of non-linear system of equations can be 

generated from considering the characteristic polynomial 

of the corresponding vector companion form of the system 

matrix. Modarres and Karbassi (2009) describe a method 

for control of discrete- time linear systems with state and 

input time-delays. 

Recently, Ahsani Tehrani obtained a method for 

localization of eigenvalues in small specified regions of 

complex plane by state feedback matrix. 

In this paper, an efficient and novel technique is 

presented that is completely different from the existing 

methodologies. The approach is based on the matrix 

inverse eigenvalue problem that it dose not need to solve 

non-linear equations. Finally, the design technique is 

described in an algorithm and illustrated with an example.  

2. PROBLEM STATEMENT 

Three distinct cases will be considered. 

(a)- State-delayed system. Consider a linear state-

delayed multivariable controllable and observable system 

defined by the state and output equations 
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where nRx  is state vector, mRu is input vector and 

lRy is output vector. It is assume that 1 ≤ m ≤ n, 0A ,

nn
j RA   for rj ,...,2,1 , mnRB  and 0C , nl

j RC 

are open-loop, input and output matrices respectively.  
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then equation (1) may be expressed in the non-delayed 

form 
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(b)- input-delayed system. Consider a linear state-delayed 

multivariable controllable and observable system defined 

by the state and output equations 
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where nnRA  , 0B , mnRB   for l,...,2,1  and 

rnRC   are state, input and output constant matrices, 

respectively.  
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



































))1((

))2((

)1(

)(

)1(

)1(1

liu

liu

iu

iu

ix

ix


 

 

(8) 

then equation (6) may be expressed in the non-delayed 

form 
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(c)- state and input delayed system. Consider a linear 

state-delayed multivariable controllable and observable 

system defined by the state and output equations 
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if we take the augmented state vector such as 
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then equation (12) may be expressed in the non-delayed 

form 

http://eej.aut.ac.ir/
http://eej.aut.ac.ir/


Amirkabir International  Journal of Science& Research 

(Modeling, Identification, Simulation & Control) 

(AIJ-MISC) 

                                    H. A. Tehrani and N. Ramroodi 

 

26           Vol. 45 - No. 2 - Fall 2013 
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The aim of eigenvalue assignment for the system 

given in (4),(9) and (15) is to design an output feedback 

controller matrix, K, producing a closed-loop system with 

a satisfactory response by shifting suitable eigenvalues 

from undesirable to desirable locations. We define control 

low as  

)()()( 1 ixCKiKyiu 
 

(19) 

The program is to obtain an output feedback K, such 

that eigenvalues of the closed-loop system 

CKBA   are in the desired spectrum 

 nL  ,...,, 21  , where i for  i = 1,2, ..., n, such 

that this closed-loop systems presents a suitable 

performance. 

A method to solve eigenvalue assignment can then be 

found for the system given in (4),(9) and (15) by any 

standard techniques such as that of Karbassi and saadatjou 

[6], who have developed a method for obtaining 

parameterized output feedback controllers with linear 

parameters for time optimal control of discrete-time 

systems. 

3. INVERSE EIGENVALUE PROBLEM  

Definition 1. The matrix inverse eigenvalue problem 

is that given four linearly independent sets of real n-

vectors  
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Clear that if the matrix  of the problem exists, the 

following consistency condition must be satisfied 
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We have following theorem. [2] 

Theorem 1. If the matrix inverse eigenvalue problem 

satisfies the consistency condition Equation (9), then the 

necessary and sufficient condition for the existence of the 

matrix   is that there are vectors 
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This Equation can be solve with the iterative method. 

Briefly, at first we assign some initial values to all iw , 

then the n-systems of linear equations can be solve easily 

[5].  

In this paper, we consider CKBA   and 1V  and 

1U matrices formed by the base vectors of the null spaces 

of
tB  and C  respectively. Then we have  
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The matrices 1U and 1V can be obtained through QR 

decompositions for B and C : 
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where ][ 10 UU and ][ 10 VV are orthogonal matrices. 

According to Theorem(1) we can find  . If such   

exists, the matrix K can be computed through the equation 
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C  are the Moor-penrose generalized 
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This method is generally solved and when B  and C  

are of full rank and  rank( B ) + rank( C ) ≥ rank( A ), we 

can expect a solution with probability 1 for a given set L. 

4. ALGORITHM 

Object: To obtain output feedback matrix K, for which 

the eigenvalues of the closed loop systems are located in a 

prescribed spectrum. 

Input: the matrices 0A , nn
j RA   and 0C , nl

j RC   

for rj ,...,2,1  and 0B , mnRB   for l,...,2,1  and 

the eigenvalue spectrum  nL  ,...,, 21  

Output: The output feedback matrix K , such that the 

eigenvalues of closed-loop system fall into the prescribed 

spectrum. 

Step 1: define the augmented state vector )1(1 ix and 

then Calculate  A , B and C , in order to a linear delayed 

system by defining an augmented  vector is changed to 

standard form. 

Step 2: Obtain lX  and rX that are null space of 
t
nB

and C respectively, then calculate 1UAY t
l  , rr XAY 

and then null space of )( lli YX  and )( rri YX  . 

Step 3: Obtain ][ 21 nzzzZ 
 

and 

][ 21 nwwwW L . 

Step 4: Calculate matrices T,   then obtain K. 

5. ILLUSTRATIVE EXAMPLES 

Example 1: Consider a discrete-time system with a 

single state delay, the problem is to find the output 

feedback controller matrix K   for  assigning the 

eigenvalue spectrum   L={−0.3, -0.1, 0, 0.1, 0.3, 0.5} to 

the delay system. 
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Step 1: Inter matrices A, B, C and eigenvalues and   

Calculate  A , B and C . 
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Step 2: Obtain lX  and rX that are null space of 
t
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and C respectively, then calculate 1UAY t
l  , rr XAY 

and then null space of )( lli YX  and )( rri YX  . 
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0.8944 0 0 0

0 0 0 0

0.4472 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

lX

 
 
 
 

  
 
 
 
   

 

0.2517 0.2353 0.9087 0.0408

0.4414 0.1177 0.1769 0.8094

0.6369 0.1469 0.1551 0.5405

0.1517 0.9095 0.2398 0.1530

0.1842 0.2495 0.1285 0.1632

0.5284 0.1408 0.2118 0.0311

rX

  
 

 
 

  
 

   
 

    

0.8944 1 0 0

0 0 1 0

0 0 0 1

1.7889 0 0 0

1.3416 0 0 0

0.8944 0 0 0

lY

 
 
 
 

  
 
 
 
   

1.2171 2.0603 0.7960 0.3065

0.0269 0.0412 0.1934 0.5357

2.8347 0.4789 0.15426 0.7161

0.2517 0.2353 0.9087 0.0408

0.4414 0.1177 0.1769 0.8094
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 

  
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 
 

   

Step 3: Obtain ][ 21 nzzzZ 
 

and 

][ 21 nwwwW  . [12] 

0.0448 0 0 0 4.3395 5.1400

2.8456 0 0 0 2.5907 6.1160
Z

  
  

    

 

0.3667 0 0 0 0.1556 0.1188

0.4071 0 0 0 0.2186 0.0644
W

 
  

    

Step 4: Calculate matrices T,   then obtain K. 
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

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000010
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Fig. 1. The input vector Elements u(i) converge to zero. 
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Fig. 2. The state vector Elements x(i) converge to zero. 

Example 2: Consider a discrete-time system with a 

single input delay, the problem is to find the output 

feedback controller matrix K  for assigning the 

eigenvalue spectrum   L={−0.6, -0.4, -0.2, 0.3, 0.5} to the 

delay system. 
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
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Step 1: Inter matrices A, B, C and eigenvalues and   

Calculate  A , B and C . 











00

10 BA
A

         









2

0
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B  

 0CC 
 


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
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
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













00320

00101
C

 

Step 2: Obtain lX  and rX that are null space of 
t
nB

and C respectively, then calculate 1UAY t
l  , rr XAY 

and then null space of )( lli YX  and )( rri YX  . 


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
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
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000

000

253358.5
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Step 3: Obtain ][ 21 nzzzZ 
 

and 

][ 21 nwwwW  . [12] 













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

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Step 4: Calculate matrices T,   then obtain K. 






















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









0043.00059.00004.00075.00022.0

0029.00032.00025.00029.00013.0

0018.00230.00086.00023.00009.0

0069.00213.00027.00030.00008.0

0010.00049.00008.00053.00013.0

T

 



































6063.00846.73584.04352.38680.0

1528.04396.14690.03664.00495.0

5442.23408.109537.46305.31100.1

6541.88958.49313.116128.70565.3

5415.341860.198291.437131.257791.10

 








 


1494.04936.4

1774.08878.4
K

 

6. CONCLUSIONS 

In this research, we investigate a new method with 

framework for explicit formulas for output feedback 

controllers with linear equations in arbitrary eigenvalue 

assignment for linear multivariable controllable and 

observable systems; which is based on the matrix inverse 

eigenvalue problem. There are many approaches for this 

problem. For example, [3,11,12] state that output feedback 

matrix can obtain from state feedback matrix under certain 

conditions. This method requires solving non-linear 

equations therefore is very costly in gain matrices. The 

method proposed in this paper does not require prior 

knowledge of the open-loop eigenvalues and the controller 

does not impose any restrictions on the position of the 

desired eigenvalues or their nature and multiplicity. so we 

can use it for discrete and continues linear systems. The 

error of method will be zero when B  and C  are 

invertible. 
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