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ABSTRACT:  Due to the important role of the boiler-turbine units in industries and electricity 
generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. 
Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various 
types of faults. In this paper, the effects of the occurrence of faults on the actuators are investigated 
and analyzed and fault detection of boiler-turbine actuators is studied. For fault detection purpose, a 
dynamic neural network with an internal feedback is applied to generate the residual. After generating 
the residuals, the decision making step, as the most crucial part of the fault detection process, has to be 
followed. For designing a proper threshold, which is sensitive to different types of faults and insensitive 
to noise, the robust threshold is designed using the model error modeling method. The robust threshold 
is designed using a dynamic neural network with an internal feedback. The results for multiple types 
of faults and various outputs show the effectiveness of this approach for designing the threshold. As a 
practical case of study the dynamic model of the boiler-turbine unit, which was represented by Bell and 
Astrom in their paper, is considered.

Review History:

Received: 2019-06-18
Revised: 2019-07-23
Accepted: 2019-07-25
Available Online: 2019-12-01

Keywords:

boiler-turbine

actuator

neural network

model error modeling

83

*Corresponding author’s email: arash_daneshnia@yahoo.com

                                  Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article                                                  
                                 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, 
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

I.  Introduction 
It is inevitable that the Boiler-turbine units are one of 

the most crucial part of power generation and like any other 
component in industries, their performance can be affected 
by various faults caused due to various reasons. A fault is 
any deviation of the system structure or parameters from the 
nominal one[1]. To decrease the damages in such systems, it is 
vital to detect fault as immediate and as accurate as possible. By 
comparing the actual behavior of the system and the expected 
one, the fault detection system can detect the occurrence of 
the fault in the system and generates an alarm[2]. Early fault 
detection can reduce the equipment loss, bad environmental 
impacts and costs. There are different types of fault which 
can occur on different components of the mentioned unit. 
Therefore, the false alarms in the detection process has to be 
decreased and the sensitivity of the fault diagnosis process to 
diverse types of faults has to be elevated.   

During the past years, various researches have been done 
with the main focus on boiler fault diagnosis. For instance, in 
papers such as [3-5] fault detection of boiler fluid transmission 
line (such as leakage in boiler tube) is investigated. In [3] four-
tube leakage fault diagnosis using threshold value principle 
has been presented. The fault law and the links between 
different types of faults can be shown using the proposed 
method of detection. Moreover, fuzzy neural networks have 
been applied to diagnose tube rupture fault [4]. In [5, 6] a 
model-based least-squares algorithm has been used in order 

to detect the leakage in boiler steam-water systems. 
In [2] the fault diagnosis has been discussed on a real 

boiler master loop. The boiler has multi loops of which the 
most important one is the master loop. A state observer has 
been used to detect the faults in the boiler master loop.  In 
[7] the robust fault detection filter (RFDF) design problem 
for linear time-invariant (LTI) system, which has been 
performed on boiler drum systems, is investigated. The 
robustness against disturbances and sensitivity to faults is 
achieved simultaneously using the residual model generator 
to formulate the robust fault detection filter as a robust H∞  
model matching problem.

 In [8] the PCA method is applied to data extracted from a 
power plant drum-type boiler. To increase the performance of 
fault detection, the optimal number of PCs has been decided 
using the most valuable singular value method. Also using 
the H-index norm technique as one of the RFDF methods 
for fault detection on a real boiler is investigated. In this 
approach, a continuous H-index method is applied to a real 
boiler. To raise the high frequency response, a high pass filter 
is augmented[9]. 

 In [10] data mining and neural networks approach are 
used to detect fault in a boiler burner system. The proposed 
method includes data mining, data preprocessing, learning 
and prediction processes by neural networks. In [11] the effects 
of faults on actuator is studied. A method based on analytical 
redundancy relations, which are generated using a bipartite 
graph, is applied to detect fault in actuators. Using structural 
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analysis based on the elimination of the unmeasured variables 
of the system, the detection and isolation can be achieved.

The fault detection on the HP drum of the boiler is 
investigated. For this purpose, the boiler of the Kerman 
combined cycle power plant is used.  The combination of 
SVM and Principle component analysis (PCA) is applied. 
Data is collected regarding the healthy and faulty conditions 
of the aforementioned boiler [12].

The modeling and fault detection of petrochemical 
boilers is also studied. To obtain the mathematical model, the 
data is collected from the real time operation of the boiler. 
The parameters are identified using the non-linear ARX 
and Hammerstein-Wienerand approaches. Detecting the 
fault has been done using the model based approaches like 
Kalman filter and by generating the residual, the occurrence 
of the fault is detected. Using this approach, all the process 
variables at the input side, output side and inside the boiler 
are estimated [13].

It is feasible for fault to happen in different parts of a 
system like actuators, sensors or components. In this paper, 
the fault detection of boiler-turbine actuators is discussed. 
Three fault scenarios are considered. 1) The actuators are 
stuck 2) Actuators are degraded and 3) Bias in the actuators. 

The paper is organized as following.  In section II the 
boiler-turbine unit model is presented. In section III the model 
equations are represented. In section IV the linearized model 
is obtained and in section V the controller has been designed 
using loop shaping H∞  controller. The fault detection method 
using the dynamic neural network is discussed in section VI. 
For the purpose of designing the neural network the data is 
collected by Matlab Simulink. Also the method for designing 
the threshold is presented in this section. In section VII the 
results are presented. In section VIII some conclusions are 
presented.

The present paper, has been represented in the 4th 
International Conference on Control, Instrumentation, and 
Automation (ICCIA), 2016 and this paper is the extended 
version [14].

II. boiler-turbine model
In this section, the model for the boiler-turbine unit 

is represented. Two groups were struggling to develop the 
nonlinear dynamic model of the boiler-turbine unit during 

1970s [15-18] :
1. The model which was developed by Astrom and Bell in 

1979 to 1987
2. Morton-Price in 1971 to 1977
The same model as the one which was presented in [15-

18] is considered in here. Fig. 1 shows a simple boiler-turbine 
structure. In the boiler-turbine configuration a single boiler 
is used to generate and feed the steam to the turbine [6]. The 
mentioned system has three actuators. One of the actuators 
is used to control the fuel flow rate, the other one is used 
to control the feed-water, and the third actuator is used for 
controlling the steam. The steam is produced due to the heated 
water in the drum. The control valve is used to control the 
resulted steam Fig. 1. Regulation of the temperature related 
to the steam is the role of the attemperator valve. The desired 
electrical power output is generated using the produced 
steam. 

 A thorough review can be found regarding the multiple 
approaches which have been used for designing the controller 
for boiler-turbine units [19]. As mentioned before, three 
outputs are considered in the system. Regarding the electrical 
output, the mentioned output must be able to meet the load 
demand. The necessity of keeping the water in the steam 
drum at a desired level is to prevent the overheating of the 
drum. Also the steam pressure has to be kept at a desired level 
to prevent overheating of the superheaters and prevents the 
wet steam from entering the turbine.  Also the level of the air 
should be at desired level to make the mixture of the air and 
flow meet the standards for safety and environment [6]. 

In this paper in order to reach the desired performance 
of the model, a H∞  robust controller has been used[20]. In 
this approach a loop shaping H∞  controller is designed for 
nonlinear boiler-turbine system. The controller is reduced 
to a multivariable PID controller. Some of the advantages of 
such controller are disturbance rejection, good tracking and 
robustness against variations of the operation points. The more 
detailed information regarding the mentioned controller can 
be found in [20]. The outputs of the boiler-turbine system of 
Fig. 1 are drum pressure, power output and water level. 

Parameters of this model were estimated using the data 
measured from the Synvendska Kraft AB Plant in Malmo, 
Sweden. The boiler is oil-dried and the rated power is 160MW 
[13].

 
Fig. 1. Schematic of a boiler-turbine unit [13] 

  

Fig. 1 . Schematic of a boiler-turbine unit [13]
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III. Boiler-Turbine model equations
Bell-Astrom boiler-turbine model equations can be 

considered as follow [15-18]:
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Where   are valves position of fuel flow, steam 
control and feed-water flow, respectively. The state variable 

is drum pressure (kg/cm2),  is turbine electrical output 
(MW) and  is fluid density (kg/m3). The output is 
drum water level (m) and  and  are steam quality and 
evaporation rate (kg/s).

IV. Boiler-Turbine linearized model
The operating points of the Bell-Astrom model are as 

table I. The linearization has been done around the fourth 
operating point. The state space equations are as follow[20]:
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V. Boiler-Turbine Controller
As mentioned in section II, a robust loop-shaping 

controller has been designed for Bell-Astrom model in [20]. 
The designed controller has good tracking and disturbance 
rejection properties and also robustness against variations of 
operation points due to plant nonlinearity[20].The simplified 
H∞  multivariable controller is as follow:
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VI. fault detection using dynamic neural network
The fault detection approach is discussed in this section. 

In Fig. 1  the fault detection scheme is illustrated. As was 
mentioned before, three types of faults are considered in here. 
Following equations are used to introduce the mentioned 
faults.

1) Actuators are stuck:
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2) Actuators are degraded:
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3) Actuators are biased:

 
Fig. 2. Residual generation 

  

 
 
 
 
 
 

  
Fig. 2 . Residual generation

TABLE I.
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Equations (8-10),  represents the output of the actuator 
and  is the input of the actuator and the signal which is 
generated by the controller. In healthy operation,   

And . When the occurred fault causes the actuators 
to get stuck, the  signal doesn’t affect the system. Also for 
the actuator degradation fault scenario, the amount of  
shows the fault severity and for the situation where a fault 
causes a bias in the actuator,  and  can have a specific value 
which shows the fault severity. For the values of   and , no 
assumptions are considered. The control inputs are presented 
as follows due to the limitations of actuators [21].
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In order to escalate the performance of the fault diagnosis 
process, the calculations of accuracy, precision and fault 
detection time are as follows: 

Accuracy:
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+ + +                                                                    
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Precision:
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In the faulty mode,  is the number of samples detected 
as faulty while  is the number of samples detected as 
normal while the system is in healthy mode. On the other 
hand,  is the number of samples which are considered 
as faulty during the healthy operation of system and  is 
the number of samples detected as healthy when the system is 
operating in faulty mode. 

A.NResidual Generation Using Dynamic Neural Networks 
One of the most important phases in model-based fault 

detection approaches is residual generation. Dynamic neural 

networks can be used for proper generation of the residual. 
Artificial neural networks have been applied not only to 
nonlinear dynamic modeling but also for fault diagnosis. 
Because of the ability of the neural networks to learn and 
generalize the nonlinear relationship between input and 
output, they provide a 

Great tool to detect fault in a system. For estimation of 
the process output in healthy situation, internal dynamic 
neural network is applied. For that purpose, three dynamic 
neural networks are used for the three outputs of the system. 
The structure of the dynamic neural network is shown in 
Fig. 3. The equations for input-output of the dynamic neural 
network can be represented as follows:

1 1 1 1 3 1( ) ( ( ) ( 1))a t f W P t b W a t= + + −                                      (14)

2 2 2( ) ( ( ))a t f n t=                                                                         (15)

2 2 1 2( ) ( )n t W a t b= +                                                                    (16)

2 2 2 1 2( ) ( ( ) )a t f W a t b= +                                                           (17)

where  is the output of the first layer,  is the 
output of the second layer,  is the activation function of the 
first layer, is the activation function of the second layer and 

,  are the weight matrices of the first and second layer 
and  is the weight matrix of the feedback layer. For the 
weight matrices and bias vectors adjustment purpose, back 
propagation through time algorithm is applied. Equations 
(14-17) can be achieved considering the structure of the 
neural network which is depicted in Fig 3. By designing the 
dynamic neural network, the residual generation process can 
be shown as Fig 2.It is possible to assume two situations in 
here. The first assumption can happen in normal operation 
when the output of the neural network and the output of 
the process are nearly the same. As a result, the residual in 
normal operation is approximately equal to zero.  Due to the 
fault occurrence, the output of the process differs from the 
neural network output. Consequently, the generated residual 
diverges from zero. Proper designation of threshold, which is 
presented in the next section, is essential for fault occurrence 
detection in the process. 

B. Designing the Threshold Using Model Error Modeling 
Approach

Different approaches, such as the simple threshold 

 

Fig. 3. Dynamic neural network with internal feedback structure 

  

Fig. 3 .Dynamic neural network with internal feedback structure
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designing techniques like ξ-standard deviation or robust fault 
diagnosis approaches, for designation of the proper threshold 
for decision making purpose are available. One of the main 
problems of using the simple threshold designing methods is 
that because of the modeling uncertainty and measurement 
noise, it is necessary to assign a value greater than zero to 
reduce the false alarms. This kind of assignment may result in 
reduction in fault sensitivity.  In order to achieve the robustness 
in fault detection one can use active or passive approaches 
[22]. In passive approaches, the robustness is achieved 
through designing the adaptive thresholds. Different types of 
threshold designing approaches, such as adaptive thresholds, 
fuzzy adaptation thresholds and model error modeling 
method, can be used to diagnose fault robustly. Avoiding 
the fast adaptation to the residual changes can be done using 
the momentum parameter in adaptive threshold designing 
method in which the proper selection of the momentum term 
can be challenging[22]. In [23] the application of model error 
modeling approach on a gas turbine model is presented. For 
constructing the error model the local linear neuro-fuzzy 
model is presented. For training of the model, LOLIMOT 
algorithm has been used[23]. 

One of the most important characteristics that should 
be considered for fault diagnosis approaches is the ability 
to detect the occurrence of incipient faults as well as abrupt 
faults in the system. In other words the proposed approach 
must be able to detect the faults which are slowly changing the 
system behavior during time[23]. 

As mentioned before, simple threshold designing 
approaches can be used to evaluate the generated residual. 
The threshold constant can be determined using the following 
equations[22]:

T t mβυ= +                                                                       (18)

In which m  is the mean value and υ  is the standard 
deviation value of the residual.

In ξ-standard deviation method, the upper bound and 
lower bound constants can be calculated as follow[22]:

T m ξυ= ±                                                                        (19)

In which m  is the mean value and υ  is the standard 
deviation value of the residual. Also ξ  can be 1, 2 or 3. 
Considering the value 1 for the ξ  parameter, the rate of false 
alarm increases but the detection time decreases as well. By 
choosing the value 3 for the ξ  parameter, the false alarm rate 
decreases but the sensitivity to detect the faults decreases as 
well and the detection time increases too.

By comparison between the actual process output and 
the model output, which has been generated by the neural 
network, the residual signals are created. In healthy operation, 
due to the existence of the noise, disturbances or uncertainties, 
the residual usually is not equal to zero. As a result, there 
is a trade-off between the rate of the false alarms and fault 
detection time. The decision making step is done as follow

0  if  ( )
( )

1  if  ( )

r k T
s r

r k T

 ≤  =  
>  

                                                            

(20)

In this approach, the main idea is to model the error of the 
modeling and use it in a way to generate the proper threshold.  

After obtaining the proper model of the process, the error 
model can be designed using the data collected from the 
difference between the process output and the model output.

The identification of residuals provides the so-called model 
error model. The designing process of the robust threshold 
is done after the designation of the model error model and 
applying the (21) and (22), [22]. 

The center of the uncertainty region is defined as 
 after the generation of the residual using 

dynamic neural network, where  is the output of nominal 
model of the process and  is the output of the error model. 
Afterwards, the upper bound and the lower bound can be 
calculated as follow:

u m eT y y tβυ= + +                                                                        (21)

l m eT y y tβυ= + −                                                                         (22)

Where υ is the standard deviation of  and is decided 
by the value of the significance level β. The values of  are 
tabulated in statistical books. Dynamic neural networks can 
be applied for the model error modeling [22]. Designing 
procedure of an error model is described in the net section.

C. Designing the Error Model Using Dynamic Neural 
Network

Dynamic neural network with internal feedback is used 
with the purpose of designing the error model and calculating 
the ey  in (21) and (22). Fig. 4 shows the entire designing 
procedure. In Fig. 4 (a) the input of the error model is the 
input of the process which is u . The parameters of the neural 
networks are modified using the difference between the actual 
value of the residual and the output of the neural network. 
The completed training is achieved when the modeling error 
approaches to zero. Following the training phase, the error 
model is applied in the same way as it is illustrated in Fig. 
4 (b), and the uncertainty region center cy , is obtained in 
this phase. Then by using the (21) and (22), the designing 
procedure of the threshold is completed. The structure of the 
dynamic neural network is the same as the one represented in 
the section III. 

 
Fig. 4. (a) Training process of the error model. (b) Generating the confidence region[22] 

  

Fig. 4 .(a) Training process of the error model. (b) Generating the 
confidence region[22]
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VII. Results
Considering the mentioned points in sections VI, for 

detection of different actuator faults, dynamic neural networks 
are trained as follow:

1) Three dynamic neural networks are trained to generate 
the residual.

2) Three dynamic neural networks are trained to generate 
the error model.

For generating the residual, dynamic neural networks 
with one hidden layer and 15 neurons are considered. 
Generation of the error model can be done using a dynamic 
neural network with one hidden layer and 10 neurons. After 
generating the residual, the model error modeling stage is 
considered. As mentioned in section VI, to generate the error 
model, every neural network has three inputs. The differences 
between the residual and the output of the neural networks 
are used to modify and adjust the parameters of each neural 
network. After the training phase, different types of faults are 
considered in the system. For each fault scenario following 
assumptions are considered:

1) For each of the actuators, faults are occurred at 300 
second.

2) There are no limitations for severity of faults, except 
for the actuators physical limitations.

3) After training the neural networks and obtaining the 
error model for each of the actuators, the rest of the process 
will be done in online mode.

Actuators are stuck: for this scenario, the (8) is 
considered. In this situation, the output of the actuator and 
input of the plant will be a constant value. Fig.5 to Fig.7 show 
the results for drum pressure, power output and drum level 
for this fault scenario. As mentioned before, the fault occurs at 
t=300. Fig. 5 shows the effect of the first actuator fault on the 
first output. Fig. 6 shows the effect of the second actuator fault 
on the second output and Fig. 7 represents the effect of the 
third actuator fault on the third output. By using the model 
error modeling method in section  VI, the following Figures 
are achieved. The red bounds on each Figure, show the result 
of using the model error modeling approach to design the 
adaptive threshold. The results show the effectiveness of the 
model error modeling approach for designing the threshold. 
Because of the difference between the actual process inputs 
and error model inputs, the confidence bound cannot follow 
the changes after the occurrence of the fault in the system. 

Actuators are degreded: for this scenario, the (9) is 
considered. In this situation, as mentioned before, the 
controller signal will be multiplied by a constant value which 
shows the severity of the fault. Fig.8 to Fig.10 show the results 
for drum pressure, power output and drum level for this fault 
scenario. As mentioned before, the fault occurs at t=300. Fig. 
8 shows the effect of the first actuator fault on the first output. 
Fig. 9 shows the effect of the second actuator fault on the 
second output and Fig. 10 represents the effect of the third 
actuator fault on the third output.

Bias in the actuators: For the third fault scenario, the same 
situation is assumed. For this scenario, the (10) is considered. 
As one can see in the mentioned equation, the multiplicative 

value is equal to 1. Fig.11 to Fig.13 show the results for drum 
pressure, power output and drum level for this fault scenario. 
The fault occurs at t=300. Fig. 11 shows the effect of the first 
actuator fault on the first output. Fig. 12 represents the effect 

 

Fig. 5. Fault 1 drum pressure output 

  

Fig. 5 .Fault 1 drum pressure output
 

 

Fig. 6. Fault 1 power output  

  

Fig. 6 .Fault 1 power output
 

  

Fig. 7. Fault 1 water level output 

  

Fig. 7 .Fault 1 water level output  

 

Fig. 8. Fault 2 drum pressure output 

  

Fig. 8 .Fault 2 drum pressure output
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of the second actuator fault on the second output and Fig. 13 
shows the effect of the third actuator fault on the third output

Results show the effectiveness of the approach for all 

three types of fault scenarios. To evaluate the effectivness of 
the proposed methods, the accuracy and precision values 
are calculated and presented in tables II, III and IV. Also the 
detection time, which is an important factor in fault detection 
process, is calculated. In other words, the ability of the 
proposed approach to detect the fault in the shortest time is 
depicted in the mentioned tables. Also the false alarm rate can 
be found out from the values of the accuracy and precision in 
tables II and III and IV.

In tables II - IV, the values of the accuracy and precision 

 

 

Fig. 9. Fault 2 power output 

  

Fig. 9 .Fault 2 power output  

 

Fig. 10. Fault 2 water level output 

  

Fig. 10 .Fault 2 water level output  

 

Fig. 11. Fault 3 drum pressure output 

  

Fig. 11 .Fault 3 drum pressure output
 

 

Fig. 12. Fault 3 power output 

  

Fig. 12 .Fault 3 power output

 

 

Fig. 13. Fault 3 water level output 

 

Fig. 13 .Fault 3 water level output
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and the detection time are shown. As one can see, for the first 
and second actuators, shorter time period is needed to detect 
the fault, but longer detection time for the third output is 
needed because of the gradual changes in the water level of 
the drum in presence of the third actuator fault. For all of the 
actuators, the high values of accuracy and precision show the 
minimum rate of false alarms. One of the other advantages of 
the model error modeling is the ability to detect faults which 
cause gradual changes in the output values. 

VIII. Conclusions
In this paper the robust fault detection of boiler-turbine 

actuators was presented. The boiler-turbine model which was 
used in this paper, was the model represented by Bell-Astrom. 
The model was obtained from the real boiler-turbine in Malmo 
Sweden. Moreover, to reach the desired performance of the 
system, a H∞  robust controller was used. Drum pressure, 
electrical output and water level are controlled by changing 
the position of fuel valve, steam valve and the feed-water 
valve. Three scenarios were considered for the occurrences of 
the faults. The first scenario was that the actuators get stuck. 
The second scenario was the Actuator degradation, and the 
third one was to consider bias in the actuators. For detecting 
the actuator fault, internal dynamic neural networks were 
used. For robust fault detection purpose, the threshold was 
designed using model error modeling approach. In order to 
generate the error model, three dynamic neural networks 
with internal feedback were used. For investigating the 
performance of proposed approach, precision, accuracy and 
the detection time of the system were calculated. Reducing 
the false alarms rate and increasing the sensitivity of the fault 
diagnosis approach to different types of fault are the most 
important properties of the fault diagnosis approach. 
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