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ABSTRACT: In this paper, a computational intelligence method is used for solution of fractional 
optimal control problems (FOCPs) with equality and inequality constraints. According to the Ponteryagin 
minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and 
by constructing a suitable error function, we define an unconstrained minimization problem. In the 
optimization problem, we use trial solutions for the states, Lagrange multipliers and control functions 
where these trial solutions are constructed by a feed-forward neural network model. We then minimize 
the error function using a numerical optimization scheme where weight parameters and biases associated 
with all neurons are unknown. Examples are included to demonstrate the validity and capability of the 
proposed method. The strength of the proposed method  is its equal applicability for the integer-order 
case as well as fractional order case. Another advantage of the presented approach is to provide results 
on entire finite continuous domain unlike some other numerical methods which provide solutions only 
on discrete grid of point. 
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1- Introduction
Fractional calculus is the study of integrals and derivatives  
of real or complex order which returns to the end of the 
seventeenth  century . The theory of  integral and derivative 
was mainly developed in the last three decades of the 
nineteenth century. Its historical survey, subject terms, detail 
theory and applications can be found in books by Oldham and 
Spanier [1], Miller and Ross [2], Samko et al. [3] and Anatoly 
et al. [4].  Since fractional-order models  are usually more 
appropriate to describe physical systems than conventional 
integer  order models (see [5]-[8]) ,  there is a growing interest 
in this area during the  last few decades.  For example, it has 
been shown that materials with memory and hereditary effects 
and dynamical processes including gas diffusion and heat 
conduction in fractal porous media can be more adequately 
modeled by fractional-order models [9].
A fractional dynamical system is a system whose dynamics 
is described by fractional differential equations (FDEs).  If 
FDEs contain a control variable and a performance index 
is given, we obtain a FOCP that is interesting in fractional 
systems. Some analytical and numerical methods have been 
obtained for approximating the FOCP in [10–18] and the 
references therein.  Among the numerical methods ,  authors 
in [14]  present a general formulation  and solution scheme 
based on finding the  numerical solution of the Hamilton-
Jacobi-Bellman equation by the Legendre– Gauss collocation 
method . In [15], for solving a class of FOCPs ,  the variational 
iteration method is used . In this work ,  new Lagrange 
multipliers are determined and some new iterative formulas 
are presented . In [18] ,  a numerical method for solving 
FOCP’s using Haar wavelets is  studied .   Although these 

methods provide good approximations to the solution, they 
require a discretization of domain via meshing, which may 
be challenging in two- or higher dimension problems. The 
approximate solution derivatives are discontinuous and can 
seriously impact on the stability of the solution. For obtaining 
satisfactory accuracy, it may be necessary to deal with finite 
meshes that significantly increase the computational cost.  
Some numerical methods also use the operational matrices 
for solving FOCPs (see [18-20]) ;  however ,  finding the 
operational matrices is usually difficult and  these matrices 
with high dimensions cause complexity in computations .  
 One promising approach for overcoming these limitations 
is to employ artificial neural networks based on a network 
topology, a connection pattern, neural activation properties, 
train strategy and ability to process data. 
There are many references in theory and applications , 
 modeling ,  design ,  structure and mathematics of neural  
networks (see [21-23]) . In particular ,  the numerical solution 
of ordinary and partial differential equations [24-28] ,  optimal 
control problems [29-32],  and numerical solutions of FOCP 
and FDE [10, 11, 33].  Among these references , authors in10] ] 
present a numerical technique for FOCPs based on a  neural 
network scheme . The  fractional derivative is in the Riemann-
Liouville sense and is approximated using the Grunwald-
Letnikov (G-L) definition for numerical computation .   In [32], 
a class of nonlinear optimal control problems with inequality 
constraints is considered. Based on Karush–Kuhn–Tucker 
optimality conditions of nonlinear optimization problems 
and by constructing an error function, authors define an 
unconstrained minimization problem. In [33], the solution 
of fractional differential equations with delay using a new 
approach based on artificial neural networks is approximated. 
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Authors in [33] consider fractional differential equations of 
variable order with the Mittag-Leffler kernel in the Liouville-
Caputo sense. 
  Investigating a general form of FOCPs with inequality 
constraints and transforming the inequality constraints 
in the optimality conditions into a system of nonlinear 
complementarity problem (NCP) functions is one of the 
motivations of our research .  The other motivation of this 
research is to inrtroduce a new  technique for some types of 
FOCPs by means of a combination  of the  Mittag-Leffler 
function and artificial neural networks that so far has not been 
utilized for the FOCPs .  By obtaining an error function   and 
introducing it as a Lyapunov function  in the neural network 
structure, we can prove the stability and convergence of the 
method similar to one in [10]. On the other hand ,  the main 
advantage of the neural network methods is that they involve 
a single independent variable regardless of the dimension of 
the problem .  The  solutions obtained from the neural network 
schemes are differentiable and in closed analytical form .
Motivated from the above discussion,  in this paper we use 
an indirect method for our numerical method .  One of the 
best properties of the indirect schemes is the high credit 
of the  obtained approximate solution of the main FOCPs .  
This technique is based on satisfying the first-order of the 
necessary conditions of FOCPs that originate from calculus 
of variation and PMP [34] . A general formulation for FOCPs 
was extended  in [35, 36] ,  where the necessary conditions of  
the optimization are achieved with the Caputo and Riemann-
Liouville derivatives .  After imposing PMP on the considered 
FOCPs ,  we obtain a two-point boundary value problem 
(TPBVP) .  For solving the TPBVP ,  we generalize a new 
collocation method which is based on neural networks as an 
exciting form of artificial intelligence .
 The rest of this paper is organized as it follows. In Section 
2, we review some basic definitions and results on fractional 
calculus. In Section 3, we introduce fractional optimal control 
problem and explain PMP. In Section 4,  the basic idea for 
discretization and optimization of the problem is provided .  
Numerical simulations are presented in Section 5, and finally 
Section 6 includes a brief summary and the conclusion .         

2- Preliminaries from Fractional Derivatives and Integrals
Now, it is necessary to introduce some definitions and 
relations in fractional calculus [3] which are used in this 
paper. 

Definition 2.1. Let [ ]: , f a b → , 0α >  be the order of  
the integral or the derivative, and [ ] 1n α= + . For [ ], t a b∈ , 
we define:

I. the left and right Riemann-Liouville fractional integral, 
respectively by 
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II. the left and right Riemann-Liouville fractional 
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III. the left and right Caputo fractional derivatives of ( )f t   
of order α , respectively  by 
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where ( ) ( )nf τ  is the usual derivative of ( )f τ  with order  n . 
The following relations show the connection between Caputo 
and Riemann-Liouville fractional derivatives, 
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Where 1<<0 α , we have 
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The Riemann-Liouville fractional derivative of the 
exponential function ( ) atf t e=  is given by

( ) 
0 1,1  ,  at

tD e t M atα α
α

−
−=           (10)

where ( )1,1M atα−  is the Mittag-Leffler function of two 
parameters 1β = ,  and 1γ α= −   is defined by the series 
expansion
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β γ
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3-  Mathematical Modeling of the Problem
Consider the FOCP as 

( )
0

minimize            , , ,  
b

J L t x u dt= ∫              (12)

( ) ( ) ( )
( )
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 , , ,  
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       (13)

where ( ) px t ∈  is the state variable, ( ) qu t ∈  is the control 
variable and t∈ . It is assumed that the integrand L  has 
continuous first and second partial derivatives with respect to 
all its arguments. In addition, we assume that F  is Lipschitz 
continuous on a set pΩ⊆  . Also α  is given a real positive 
constant. According to discussions in [32, 36], if ( ), x u  be a 
minimum solution of (12) and (13), then there exist  ( )tλ  and 
( )tµ  which ( ), , , x u λ µ  satisfies

( ) ( ) ( ) 
  , , , , , t b

HA t B D t t x u
x

αλ λ λ µ∂
− = −

∂
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( ) ( ) ( ) 
0   , , , , ,t
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where H  denotes the Hamiltonian and is defined in the form 
of

( ) ( ) ( ) ( ), , , , , , , , , , .H t x u L t x u F t x u t x uλ µ λ µ= + +

We can establish the relationship between the solution to 
nonlinear complementarity problem (NCP) (17)-(19) and the 
solution to an equivalent equation using an NCP function (see 
[37]). The class of NCP-functions defined below is used to 
construct an interesting property.

Definition 3.1. [37] A function 2:ϕ →   is called an 
NCP-function if it satisfies

( )
 

, 0 0,   0,   0. a b a b abϕ = ⇔ ≥ ≥ =

A popular NCP-function is the Fischer-Burmeister (FB) 
function, which is strongly semi-smooth and is defined as

( ) 2 2 .FB a b a bϕ = + − +

The perturbed FB function is also given by 

( ) 2 2 ,     0 .FB a b a bεϕ ε ε += + − + + →

The important property of  FB
εϕ  is stated by the following 

proposition.

Proposition 3.1. [37] For every   ε∈  we have 
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Using the perturbed FB function, we can thus convert the 

NCP (17)-(19) into equality constraints as
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Therefore, the system (14)-(20) can be rewritten in the 
following form,
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4- Discretization and Optimization
In this section, we provide the introductory materials for the 
mathematical modeling of system (21) with feed-forward 
artificial neural network [38]. We can establish the relationship 
between the solution to the optimality conditions (21) and 
the solution to an equivalent unconstrained minimization 
problem via the trial solutions. These trial functions for 
the state, Lagrangian multipliers, and control functions are 
selected as
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where I  is the number of neurons that can be different for 
each neural network; ,  w v are the weight parameters, and b  
represents the bias. Also,  σ  is the exponential function xe  as 
a candidate to replace the log-sigmoid function in the neural 
network model. It has a universal function approximating 

Fig. 1. Structural derivatives in integer- and fractional- order with neural network architecture for FOCPs [38].
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capability and known fractional derivative as well. A generic 
form of the neural network architecture for FOCPs is 
represented in Figure 1.
The approximate continuous mappings in the form of 
linear combination of exponential functions can be taken to 
approximate the solution ,  ,  ,  T T T Tx uλ µ   and its integer and 
fractional derivatives. The trial solutions in (22) must satisfy 
in conditions (21). We thus have

( ) ( ) ( ) 
  , , , , ,     T t b T T T T T
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HA t B D t t x u
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∂
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In order to reformulate (23)-(27) as an unconstrained 
minimization problem, we first collocate the optimality system 
(23)-(27) on 1m +  points ,  0,1 , , kt k m= … , of the interval 
[ ], a b . According to (10) and the introduced structure of the 
neural network in the exponential form, an approximation of 
the left Riemann- Liouville fractional derivative  ( ) 
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We can approximate integral in (28) by any numerical 
integration techniques such as Simpson rule [39]. We now 
define an optimization problem as
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Lemma 4.1. [10] If:
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then *y  is an optimal solution of (29).

Proof. Let ( )* 0yγ = . Then for 1, 6i = …  and 1, , k m= … , 
we have ( )*,  0i kE t y = . Since in (29) ( ) 0E y ≥ , thus *y  is 
an optimal solution of (29).
By Lemma 4.1, we can easily verify that the minimization 
problem (29) is equivalent to the following problem,

( ) ( )21minimize     . 
2y E y yγ=          (32)

In order to solve the unconstrained optimization problem in 
(32), we can use any optimization algorithms  such as the 
steepest descent, Newton, quasi-Newton, conjugate gradient, 
etc. [40-42] and the heuristic algorithms such as genetic 
algorithm, particle swarm optimization, ant colony search 
algorithms, etc. [43].

5- Numerical Examples 
 In this section, we try to implement two numerical examples 
to illustrate the efficiency and applicability of the proposed 
method. 

Example 5.1. We consider a single-input scalar system as  
follows,

( ) ( )( )
1

2 2

0

1                                                           minimize    ,                                               
2

J x t u t dt= +∫
( ) ( ) ( ) 

0                                        subject to     ,                         tD x t x t u tα = − +

with the initial condition ( )0 0.x =   The analytical solution of 
the mentioned problem with 1α =   is given in [36] as

( ) ( ) ( )cosh 2 sinh 2 ,x t t tβ= +

( ) ( ) ( ) ( ) ( )                                  1 2 cosh 2 2 sinh 2 ,u t t tβ β= + + +

where ( ) ( )
( ) ( )

cosh 2 2 sinh 2
0.98.

2 cosh 2 sinh 2

t t

t t
β

+
= − ≈ −

+
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According to (21) we have
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Since ( )1x  is free, we have ( )1 0λ = . Corresponding to this 
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We obtain the approximate solution of state and control 
functions by using the presented method in the cases of 

1α =  and several values of α . In Figures 2 and 3, the exact 
solutions for 1α = , approximate solutions of the neural 
network scheme for  1, 0.95, 0.9, 0.7, 0.5α =  and the absolute 
error for 1α =  are shown for the state and control functions, 
respectively. 

Example 5.2. In the second example, we consider an 

optimization problem with inequality constraints as it follows,
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The exact state and control functions for 1α =  are 
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Fig. 2. Optimal trajectory x(t) for α=1,0.95,0.9,0.7,0.5  and the absolute error  for α=1.

                   
Fig. 3. Optimal control u(t) for α=1,0.95,0.9,0.7,0.5  and the absolute error  for α=1.
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We illustrate the approximate solutions for ( )x t  and ( )u t  in 
Figures 4 and 5, respectively.

6- Conclusion
This paper presents an indirect method for solving a class of 
FOCPs based on a combination  of the  Mittag-Leffler function 
and artificial neural networks. The discussed problem includes 
the integer and fractional order derivatives with equality and 
inequality constraints. In this novel method, the inequality 
constraints in the optimality conditions are transformed into a 
system of NCP functions. An approach based on feed-forward 
neural networks, optimization techniques, and collocation 
methods is then stated to determine the approximate solution 
of the FOCPs. 
It should be noted that in the method presented in this 
paper, after obtaining the values of weights by solving 
the unconstrained optimization problem (32), we put the 
obtained weights in the trial solutions (22). We then plot the 
response curve continuously without any need to the use 
of interpolation or fitting methods [39]. However, in some 
other numerical methods such as collocation methods, finite 
element methods, finite difference methods, etc., one acquires 
first the solution in different points, discretely. One then plots 
the curve solution by interpolation or fitting methods. This is 
an important disadvantage of some other methods compared 
with neural network methods. In fact, the obtained solution 
by the neural network methods is in a closed analytical form.
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