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1- Introduction  
Reusable Launch Vehicle (RLV) is widely used in Space 
missions. One of the most famous RLVs is the re-entry 
capsules with the low Lift/drag ratio (L/D) used in manned 
and payload return from space to the earth [1-3]. Designing a 
proper algorithm for the attitude control of an RLV in order 
to achieve various missions has  generated many researches 
in this area [4-6]. Within re-entry phase, wide changes in 
aerodynamic characteristics, the significant coupling between 
the axes of the re-entry vehicle, external disturbances, and 
model uncertainties make it difficult to control the re-entry 
capsule. Also, the capsule must fly in a narrow flight corridor 
to limit mechanical load and heat flux that acted on the 
capsule [7-10]. Traditionally, different linear control methods 
have been proposed such as Linear Quadratic Regulator 
(LQR) and gain scheduling [11-13]. In these methods, several 
operating points are selected and the plant is linearized around 
these operating points. These methods are very simple, but 
they cannot guarantee global stability and, also, are time-
consuming in practice [14, 15]. In general, since the model of 
the re-entry vehicle is highly nonlinear, thus linear algorithms 
could not provide the stability in the re-entry phase. Thus, 
advanced control methods are very critical to meet safety, 
reliability and cost requirements for an RLV.
In order to improve the flight control performance of an RLV, 
many nonlinear control algorithms have been developed 
for attitude control of re-entry vehicles, such as dynamic 
inversion, sliding mode, adaptive, adaptive back-stepping, 
and adaptive sliding mode control methods. Nonlinear 
Dynamic Inversion (NDI) algorithm has been proposed to 
control a re-entry vehicle [16-18]. Implementation of the 
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NDI method is very simple, and, also, in these papers a 
complete model of the re-entry capsule has been considered 
to design an attitude controller. However, this method is very 
sensitive to external disturbances and model uncertainties 
[19]. In order to solve this problem, versatile methods have 
been developed in recent years. In [20], the Sliding Mode 
Control (SMC) method has been proposed to control the 
attitude of a re-entry vehicle. Sliding mode control is one 
of the most robust control techniques and  is insensitive to 
external disturbances and uncertainties [21]. However, the 
SMC method suffers from the chattering phenomenon [22, 
23]. The boundary layer technique is used to alleviate the 
chattering [24]. Unfortunately, the robustness and accuracy 
of the SMC methods, within the boundary layer are no longer 
assured [9].  Thus, some advanced SMC methods have been 
developed to improve the performance of the SMC methods, 
such as nonsingular finite-time second-order sliding mode 
[9], and the second-order time-varying sliding mode [22]. 
In these references, the chattering problem of SMC has been 
solved, however, the actuator’s dynamics and its output 
constraints have been neglected and not been considered in 
the design of the controller, which  may reduce the controller 
performance in a practical situation. Geng Jie et al. [25] 
designed a finite-time sliding mode attitude controller for a 
re-entry vehicle and considered actuator’s dynamics in their 
controller design, while the actuator’s output constraints have 
not been considered; also, the translational motion of the re-
entry vehicle has not been considered in the controller design 
process. Thus, the equations of motions have been simplified. 
One of the other control method widely used in designing 
the attitude controller of re-entry vehicles is adaptive control, 
which does not have  the chattering problem and also 
keeps a decent tracking performance in the presence of the 
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uncertainties [26]. Bai et al. [26] and Shi et al. [27] developed 
adaptive control methods to control the attitude of the re-
entry vehicle. Although their designed controller had a proper 
performance against disturbances and model uncertainties,  
they had not considered the actuator’s model and the actuator 
output constraints. An adaptive controller has been designed 
to control the attitude of RLV by considering the uncertainties 
and the actuator’s output constraints [28]; however, the 
actuator’s model has not been considered. To solve these 
problems, an adaptive control has been proposed  to consider 
the actuator’s model and its constraints [29]; however, the re-
entry vehicle’s dynamical model has been simplified, and the 
translational motion has been considered decoupled from the 
rotational motion. In some recent studies, the combination of 
control methods has been proposed to provide more effective 
attitude controller such as adaptive back-stepping and adaptive 
sliding mode. In the references [10, 30, 31], adaptive back-
stepping methods have been developed to control the attitude 
of RLV. They have considered the external disturbances, 
model uncertainties, and output constraints, however, all 
of them have not considered the actuator’s model in their 
calculations. Wang L et al. [32] used combination of adaptive 
and sliding mode control methods, and also Wang Z et al. [33] 
designed an adaptive, backstepping, sliding mode controller. 
Both of these methods have had proper performances against 
external disturbances and model uncertainties, but they have 
not considered the actuator model in the controller’s design 
process, and also they have used the simplified model of 
the re-entry motion in order to design the control algorithm. 
Generally, the main advantage of the mentioned methods is 
their suitable performance against external disturbance and 
uncertainties; but designing the controller by using these 
methods for a re-entry capsule is very complex. Thus, for 
designing the re-entry capsule’s attitude controller needs 
many simplifying assumptions into  the model. In addition, 
due to the actuator’s model and output constraints, complexity 
of the controller design will be increased. Thus, in the most of 
these control methods, the actuator’s dynamics is neglected, 
that may reduce the controller performance in a practical 
situation.
In this paper, a novel attitude control algorithm, named B.D.A 
will be designed for a reusable capsule with a low lift/drag  
ratio, (L/D ≈0.3). This algorithm included backstepping 
dynamic inversion and adaptive control methods which is used 
to control the attitude of the re-entry vehicle in the presence of 
external disturbances, uncertainties in the moment of inertia, 
the controller output constraints and the thruster model. 
In this method, the dynamic inversion algorithm will be 
designed to control the attitude angles by using the kinematic 
equations of the vehicle. Then, an adaptive mechanism will 
be designed to control the attitude angular rates by using  
dynamical equations. The main idea of the dynamic inversion 
method is to transform the dynamics of the nonlinear system 
into a linear one using the exact feedback of the system states 
or outputs. But, since dynamic inversion method is very 
sensitive to the model uncertainties, an adaptive algorithm 
will be designed by using the dynamical equations to control 
the attitude angular rates while it can keep a good tracking 
performance in the presence of the uncertainties [20]. A 
single control variable bank angle has been considered to 
control the attitude of the re-entry capsule while the angle of 
attack and side slip angle will be stabilized in their inherent 

value in order to provide the required L/D. The simulation 
results will show  that the proposed B.D.A method is effective 
to control the attitude of the re-entry capsule in the presence 
of the model uncertainties and external disturbances.

2- Re-entry capsule model
In this section, 6-DOF motion equations of the RLV during re-
entry phase will be described, and the control-oriented model 
will be derived to design the control algorithm. Dynamical 
equations of the motion of a re-entry capsule can be separated 
into the translational and rotational equations. Translational 
motion’s equations can be written as follows [34]:
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Here, equation (1) describes the translational kinematic 
equations, and equation (2) describes the translational dynamic 
equations.  , , , , ,h Vµ λ γ χ  are altitude, longitude, latitude, 
velocity, flight path angle, and heading angle respectively. 
 , ,L D Y are lift, drag, and side slip force and  , ,E ER g Ω  are 
radius of the earth, gravity acceleration, and earth angular 
speed, respectively. Rotational motion’s equations will be 
given as follows [35]:
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where equations (3) and (4) describe the rotational kinematic 
and the rotational dynamic equations of re-entry capsule, 
respectively. The parameters , , , , ,p q rα β σ are the angles of 
the attack, sideslip angle, bank angle, roll rate, pitch rate and 
yaw rate, respectively. Also , ,I M ω  represent the moment of 
inertia, capsule momentum, and angular speed matrix in the 
body frame, respectively, and are defined by the following 
relations   
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Equations (3) and (4) are the re-entry capsule motion’s 
equations and will be used to design the controller algorithm.

3- Thruster Model
The general form of a linear thruster’s model can be stated by 
equation (6) [36]:
Tu u v+ =  					              (6)
where u is the vector of desired controller output, v is the 
vector of desired thruster input, and T is a diagonal square 
matrix with a positive time constant, hence T=TT> 0 [36]. If 
v is equal to u, then the thruster is ideal and has no dynamics. 
However, thrusters have a dynamical model, which is usually 
presented by a transfer function, as follows:

1

1

u
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= =
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Equation (7) is a conventional thruster’s model which will be 
used for the control mission.

4- Backstepping Dynamic Inversion Adaptive Control 
    (B.D.A) 
In this section, the backstepping dynamic inversion adaptive 
(B.D.A) schemes will be presented. These  schemes present 
a new combination of the attitude control methods, namely, 
backstepping dynamic inversion and adaptive control 
methods (B.D.A). The block diagram of B.D.A controller 
scheme has been shown in Figure 1. According to Figure 1, 
dynamic inversion principles will be used to transform the 
nonlinear equation (3) into a linear one in the first control 
loop.  These  linear equations will be controlled by designing 
a conventional PI controller.
In the first control loop, [ ]TC C C Cp q rω =  will be used to 
track the guidance command [ ]TC C C Cσ α βΩ = , and it is 
the output of the first control loop. Then, [ ]TC C C Cp q rω =  
will be considered as the second control loop reference 
command. In the second control loop, the controller output 
u will be designed based on adaptive control method to 
track Cω  in the presence of external disturbances, model 
uncertainties, controller’s output constraint and thruster’s 
model. The guidance command vector [ ]TC C C Cσ α βΩ =  
will be generated by using the guidance algorithm. In this 
paper, the Apollo capsule guidance algorithm has been used 
to generate the guidance commands.

4- 1- B.D.A controller design
In this section, the proposed B.D.A control algorithm will 
be designed to control the re-entry capsule attitude in the 
presence of external disturbances, model uncertainties, 
controller’s output constraint and thruster’s model.

4- 2- Dynamic inversion controller (first control loop)
Dynamic inversion controller will be designed to linearize  
equations (3). Thus, according to  equations (3), we will have:

Inverse 
Dynamic 
control

PI 
Control

Adaptive 
Control plant

Second  control loopFirst control  loop

Back stepping

+ 

_
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_
Actuator

Guidance
algorithm

v u

Figure1: Control scheme block diagram
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   is the input vector of the first control 
loop and can be computed by using equation (9) as follows:
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where e is the attitude angle tracking error and will be 
considered as follows:
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KP and  KI are PI controller gains and will be defined, below:
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[ ]TC C C Cp q rω =  is the output vector of the first control 
loop and must be provided by the second control loop. In the 
next section, we will design the adaptive controller to control 
the attitude angular rate of the capsule.

4- 3- Adaptive controller (second control loop)
In this section, an adaptive controller will be designed to 
control the attitude angular rate. Thus, equation (4) will be 
rewritten as follows:

.I I uω ω ω= − × +   				         (12)

By considering the external disturbances vector as 
[ ]1 2 3

Td d d d=  and model uncertainties in the moment of 
the inertia matrix as I∆  and inserting them into equation 
(12),  equation (12) can be written as follows:
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and u is the controller output vector as follows:
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where I and ω×  were defined in equation (5).
By considering the angular rate error as equation (17),
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we will have:
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Now, the purpose is to design the controller output vector 
u by considering the controller output constraints. Based 
on the study  in [10], we will consider the controller output 
constraints as 

0( )u sat u= . By inserting it into equation (14), 
we will have:
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According to  equation (20), we have:
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where 00 1u iδ< < . 
According to equations (19) and (20), we have:
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Inserting equation (24) into the equation (18), we have:
1 1

0 0 .u come I I I u Dω ω δ ω− −= − × + + −   		        (25)

Assume that there is a positive ρ  satisfying dD ω ρ− ≤ . 
Since ρ  must be estimated online, the adaptation law is used 
to update ρ . Based on the study in [10], the controller output 
can be computed as follows:
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and adaptation law for ρ  and 0ûr  will be computed as 
follows [10]:	

1ˆ eρ µ=  					          (27)
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1 3
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where 1 2 0 0ˆˆ, , , , (0), (0) 0u urλ ε µ µ ρ > .
To prove the stability of the designed adaptive control law 
in equation (26), the Lyapunov function will be chosen as 
follows [10]:
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By using equations (27) and (28), the time derivative of V1 
is given by:
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By integrating (27) with  (28), we will have:

01ˆ ˆ( ) (0) ,tt e dtρ ρ µ= + ∫  				         (31)
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1
0 0 ˆˆ ( )

.

T
u ue e e r r I I e

e

ρ ω ω ρ

ε

−+ − × +

≤ −

 

 		       (33)

Therefore, it is clear that 1 0V ≤  and e converges to the origin 
in the finite time. 

4- 4- Stability Proof of the B.D.A Algorithm in presence of 
the thruster model 
In this section, the stability proof of the proposed B.D.A 
controller will be achieved in presence of the thruster’s model 
which was mentioned in equation (6). Since the thruster has 
dynamics, it must be considered in the design of control 
algorithm and the stability proof of B.D.A must be driven 
again. Therefore, equation (6) will be rewritten as follows:

,Tu v u= −  					          (34)

and the thrust error will be considered as follows [36]:
.z u τ= −  					           (35)

which z is the error between desired controller output u and 
the real torque τ . Equation (35) can be rewritten as follows:

,z u τ= −   					          (36)

.Tz Tu Tτ= −   					           (37)

According to equations (34) and (37), we have:
.Tz v u Tτ= − −   					           (38)

Then, a new Lyapunov function has been chosen as follows:

2 1
1 .
2

TV V z Tz= +  				          (39)

Thus, the time derivative of equation (39) can be computed 
as follows:

2 1 .TV V z T z= + 



 				     	      (40)

By considering equations (38) and (40), we will have:

2 1 ( ).TV V z v u Tτ= + − − 

  			         (41)

Then, a desired thruster input v will be designed as follows:

v Kz T uτ= − + +  				         (42)

where K=KT>0 is the feedback gain matrix. 
According to  equation (41),  equation (42) can be written as 
follows:

2 1

1

( )
0.

T

T

V V z Kz T u u T
V z K z

τ τ= + − + + − −

= − ≤

 

 



 		   	       (43)

From equation (43), it is clear that 
ÿ

2 0V <  for z ≠ 0. 
Investigation of 2 0V > shows that 2 0V >  for z ≠ 0, and also 
that 2V →∞  when z→∞. Besides, this is an autonomous 
system, owing to the fact that the system does not depend on 
time. These three criteria state that the controller is globally 
asymptotically stable according to Lyapunov’s direct method 
[37]. Hence, the adaptive controller is globally stable in the 
presence of the thruster model.

Remark 1: According to (26), the controller output will 
cause chattering. By defining a boundary layer around e, 
the chattering phenomenon can be omitted [10]. Thus, the 
controller output in equation (26) can be computed as follows:

2

1
0

0

0 2

1
0

0
0

ˆˆ ( )

ˆˆ ( )

.

T

u
u

T

u
u

u

I I e

r I I Ie
if e

e

I I e

r I I Ie
if e

u

λ

ω ω ρ ε
ε

λ

ω ω ρ ε
ε

ε

−

−

−

−

− −

× + +
>

− −

× + +
≤





= 






 		        (44)

Remark 2: In real conditions, e  cannot be exactly zero. 
Thus, based on  equations (27) and (28), ρ̂  and 0ûr  may be 
increased boundlessly. In order to solve this problem, the 
adaptation laws have been modified as follows [10].

1 0

0

ˆ
0

u

u

e if e

if e

µ ε
ρ

ε

>
=

≤





  			         (45)

1 3
2 00

0
0

ˆ ˆ( )
ˆ

0

u u
u

u

I I r e if e
r

if e

µ ω ω ρ ε

ε

− × + >
=

≤







 		        (46)

In equations (9) and (44), the larger values of , ,PK λ ε  present  
a faster convergence of the system; however, the controller 
output will be increased. Also, larger value of 1 2,µ µ  will 
cause faster convergence of 0ˆ ˆ, urρ ; however, the controller 
output will be increased, as well. Thus, there must be a trade-
off  between accuracy, faster convergence of the system, and 
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controller output.  

4- 5- Dynamic inversion controller (second control loop) 
design for B.D control algorithm.
In this section, a dynamic inversion controller will be designed 
for the second control loop to track reference commands that 
are generated in the first loop. If both two control loop are 
designed based on dynamic inversion, the control algorithm 
will be titled the B.D. The B.D.A controller and the B.D 
controller have been designed independently from each other. 
The B.D control algorithm is designed based on reference 
[16]. Similar to 4-2, to design dynamic inversion controller 
for the second control loop, equation (12) can be written as 
follows [16]:

u I Iω ω ω= + ×
   



	        				          (47)

where [ ]Tp q rω =     is the input vector of the second control 
loop and can be computed by employing  equation (48) as 
follows: 

2 2 2 2( ) ( ) ,p IK e K e dtω = + ∫  			        (48)

where 2e  is the attitude angle rate error vector and can be 
computed as follows:

[ ]2 , , .T
C C Ce p p q q r r= − − −  			        (49)

KP2,and KI2 are the PI controller gains  defined as follows:

2 21 22 23

2 21 22 23

, , ,

, , .

T
P P P P

T
I I I I

K K K K

K K K K

=   

=   
 			        (50)

Therefore, equation (8) can be used to  design the first control 
loop in both B.D and B.D.A schemes. Equation (47) is used 
to  design the second control loop in the B.D scheme and 
equations (44), (45) and (46) are utilized  to design the second 
control loop in the B.D.A scheme. The simulation results will 
be presented in the next section.

5- Simulation And Results Analysis
In this section, simulation of the designed control algorithm 
(B.D.A) will be performed based on a 6-DOF dynamics of 
the capsule and, next, the results analysis will be presented. 
Finally, the comparison between the B.D.A controller and the 
B.D controller will be carried out to evaluate the proposed 
B.D.A controller. 
Simulation parameters including the inertia matrix (I), 
external disturbances (d), inertia matrix uncertainties ( I∆ ), 
controller output constraints ( max min,u u ) and the time constant 
(T) of the thruster model have been summarized in the Table 
1.
The initial flight conditions of the capsule have been presented 
in the Table 2

Table 1: Simulation parameters.

ValueDefinitionParam-
eter

7985.5 59.7 503
259.7 7150.6 32.5

503 32.5 6456.4
kg m

−
− −

− −

 
 
 
 

Moment of inertia 
matrix of  the 

capsule
I

 N.m

1 sin( ) sin( )
125 250

21 sin( ) sin( ) 10
125 250

1 sin( ) sin( )
125 250

t t

t t

t t

π π

π π

π π

+ +

+ + ×

+ +

 
 
 
 
 
 
  

External  
disturbance matrixd

0.2 I
Uncertainties in 
the Moment of 
inertia matrix

I∆

5000 N.mMaximum  
controller outputumax

-5000 N.mMinimum  
controller outputumin

0.05sThruster model 
time constantT

Table 2: Initial conditions.

Param-
eter Definition Value 

0h Altitude 121920 m

0v Velocity 7832 m/s

0µ Longitude 49 deg

0λ Latitude 35 deg

0γ Flight path angle -4.3 deg

0χ Heading angle 136 deg

0α Angle of attack -15 deg

0β Side slip angle 0 deg

0σ Bank angle 0 deg

0p Roll rate 0(deg/s)

0q Pitch rate 0(deg/s)

0r Yaw rate 0(deg/s)

Table 3: Parameters of B.D.A controller

Parameter 1 2,µ µ ε λ 0εu 1 2 3= =p p pK K K 1 2 3= =I I IK K K ( )0ˆ 0ur ( )ˆ 0ρ

Value 0.1 4 0.2 . diag 
(1,0.5,0.5) 0.05 0.4 0.01 0 0
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5- 1- Simulation and control performance analysis of B.D.A 
controller
In this section, the simulation results and performance analysis 
of the B.D.A controller will be presented. The parameters of 
the B.D.A controller are summarized in Table 3.
The performance of the controller to track the guidance 
commands is  shown in Figure 2. In this case, the tracking 
quality seems satisfactory and is in a great compliance with 
the desired values.
Figure 3 shows the guidance commands tracking errors. It 
shows that the maximum tracking error of the attack angle 
and side slip angle are less than 1 degree. The maximum 
tracking error of the bank angle is higher  than 100 degrees. 
This is due to the inertia of the capsule when the guidance 

commands change. The tracking errors can be reduced by 
augmenting the controller outputs constraints levels.
In Figure 4, the rates of angular velocity have been illustrated. 
It is clear that reference commands have been tracked properly 
by applying the proposed control algorithm.
Figure 5 presents the controller outputs.  It is obvious that the 
value of the controller’s outputs is less than the controller’s 
output constraints levels. Because of the stabilization of the 
re-entry capsule in pitch and yaw axis, a small controller 
output has been generated.
The load factor, landing accuracy, and L/D ratio are presented 
in Figure 6 that illustrates that the value of the load is less 
than 5g and landing accuracy is less than 500 m. Also, the 
L/D ratio is kept around 0.3.
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Figure 2: Guidance commands tracking.
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Figure 3: Guidance commands tracking error.
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Figure 4:  Attitude angle rate tracking.
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Figure 5: Controller output

0 100 200 300 400 500
-250

-200

-150

-100

-50

0

50

100

  Time( s )

Po
si

tio
n 

er
ro

r (
m

)

 

 

 

0 200 400 600
0.2

0.25

0.3

0.35

0.4

Time (s)

L 
/ D

 ra
tio

0 200 400 600
0

1

2

3

4

5

Time (s)

Lo
ad

 (g
)

Figure 6: Landing accuracy (left), L/D ratio (center) and load on the vehicle (right).

In order to evaluate the performance of the B.D.A controller, 
the back-stepping dynamic inversion (B.D) controller has 
been designed to be used in the second control loop and the 
results will be compared with the proposed B.D.A controller.

5- 2- Simulation and control performance analysis of B.D 
controller
In this section, simulation of the B.D control algorithm will 
be performed based on a 6-DOF dynamical model of the 
capsule and the results analysis will be presented. The initial 
conditions are the same as conditions in the B.D.A controller 
which have been presented in the Table 2. The B.D controller 
parameters have been summarized in Table 4.
Figure 7 shows that the B.D controller performance is 
satisfactory as it tracks the guidance commands. 
Figure 8 depicts reference angle tracking error by applying 
the B.D algorithm. The angle errors change according to 
variations of the reference guidance commands. These errors 
are less than 1 degree except in the cases where the reference 
guidance commands change abruptly due to the high inertia 
of the re-entry vehicle.
Reference angular rates tracking has been presented in Figure 
9 which illustrates fine angular rate reference command 
tracking. Because of the coupling between re-entry capsule 

axes, there is a close relation between roll rate and yaw rate 
of the re-entry capsule which causes yaw rate to change when 
roll rate varies.
The B.D controller outputs are shown in Figure 10. It shows 
that the controller outputs have exceeded controller output 
constraint (5000 N.m) in roll and yaw axes. In roll axis, the 
controller output is about -40000 N.m which is higher  than 
the controller output constraint.

Table 4: Parameters of the B.D controller

Parameter Value Parameter Value

1pK 0.4 3IK 0.04

2pK 0.5 21pK 5

3pK 0.3 22pK 7

1IK 0.05 23pK 4

2IK 0.05 21 22 23= =I I IK K K 0
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Figure 7: Attitude angle tracking.
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Figure 8: Attitude angle tracking error.
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Figure 9: Attitude angle rate tracking
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Figure10: B.D controller output in the body axis
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According to the simulation results of the B.D.A and B.D 
controller, a comparison between B.D.A and B.D controllers 
can be summarized as follows:

1.	 Both B.D.A and B.D controllers provide a stable 
control system in the presence of the external disturbances 
and uncertainties in the moment of inertia matrix. The angle 
of attack and side slip angle errors are less than 1 degree.

2.	 The controller’s output in the B.D controller is greater 
than 40000 N.m in the roll axis while the B.D.A controller’s 
output is less than 5000 N.m in the same conditions.

3.	 The controller’s output in the B.D controller is greater 
than 8000 N.m in the yaw axis while the B.D.A controller’s 
output is less than 5000 N.m in the same conditions.

4.	 The B.D controller is more sensitive to the model 
uncertainties than the B.D.A controller. Hence, the B.D.A 
controller is more appropriate than the B.D controller in the 
phase of re-entry.
The results of comparison between the B.D and B.D.A 
controllers are summarized in Table 5.
According to Table 5, it is clear that the B.D.A controller is 
more effective than the B.D controller and generates lower 
controller’s output in the same conditions.

6- Conclusion
In this paper, a new attitude control algorithm, called 
B.D.A, has been designed based on backstepping dynamic 
inversion and adaptive control methods to control the 
attitude of a low L/D re-entry vehicle in the presence of the 
external disturbances, uncertainties in the moment of inertia, 
controller’s output constraints and the thruster’s model. 
In this method, the dynamic inversion algorithm has been 
designed to control the attitude angles using the kinematic 
equations of the vehicle. Then, an adaptive mechanism has 
been designed to control the attitude angular rates using the 
dynamical equations.
A single control variable bank angle has been considered to 
control the attitude of the re-entry capsule. The simulation 
results have shown that the B.D.A controller can provide a 
stable guidance command tracking. The proposed controller’s 
outputs are less than 5000 N.m. The B.D.A controller results 
have been compared with  those  of the B.D controller 
to evaluate the performance of the B.D.A controller. The 
simulation results have shown that the B.D controller is 
very sensitive to the model uncertainties and the external 
disturbances and it generates too high (higher  than 40000 
N.m) controller’s output while the B.D.A controller output 
is less than 5000 N.m in the same conditions.  It means that, 

in comparison with the B.D controller, the proposed B.D.A 
method is more effective to control the attitude of the re-entry 
capsule in the presence of the model uncertainties and the 
external disturbances.

Nomenclature 
Symbols Definitions Symbols Definitions

h Altitude L Lift force

V Velocity D Drag force

µ Longitude Y Side slip 
force

λ Latitude m Capsule 
mass

γ Flight path 
angle I

Moment 
of inertia 

matrix

χ Heading 
angle u Controller 

output

α Angle of 
attack ER Radios of 

earth 

β Side slip 
angle EΩ

Angular 
velocity of 

earth

σ Bank angle T
Thruster 

mode time 
constant

p Roll rate e Tracking 
error

q Pitch rate d External 
disturbance

r Yaw rate I∆
Uncertainty 
in moment 
of inertia 

matrix

Ω Vector of at-
titude angle v

Desired 
thruster 
input

ω
Vector of at-
titude angle 

rate
τ Real torque 

of thruster

Table 5: Comparison between the B.D and B.D.A controllers.

Controller
method

Control 
method of 

first control 
loop

Control 
method of 

second con-
trol loop

Accuracy of 
angle of attack 
and side slip 

angle
(deg)

Mx
(N.m)

My
(N.m)

Mz
(N.m)

B.D.A Dynamic 
inversion Adaptive <1o 5000 5000XM− < < 3000 500YM− < < 500 1500ZM− < <

B.D Dynamic 
inversion

Dynamic 
inversion <1o 50000 30000XM− < < 4000 1000YM− < < 8000 12000ZM− < <
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