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ABSTRACT

In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a
cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired
initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the
dual arm system. Then, dynamics of the system and the relations between forces/moments acting on the
object by the robots, using different Jacobian matrices, are derived. The proposed control method is a
position control approach; therefore, it does not need the complexity of measurement of forces and moments
at the contact points. Simulation results are provided to illustrate the performance of the control algorithm.
The robustness of the proposed control scheme is verified in the presence of disturbance and uncertainty.
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1. INTRODUCTION

The robotic systems consisting of multiple robots have
more capacity than the single robot for the tasks such as
handling heavy materials and assembly. Many researchers
have studied the coordinated control of multiple robot
arms actively. When multiple robots grasp one object, the
robotics system forms a closed chain mechanism that is
extremely nonlinear and coupled.

Some control approaches specify the object motion
with regard to the independent robot arm actions, and
transform object trajectory into the individual robot end-
effector trajectory. In addition to these approaches, Hayati
[1] extended the Raibert and Craig’s [2] position and
force control scheme to multiple coordinated robot arms.
Khatib [3] developed a control scheme for nonredundant
robotic arms based on the dynamic model in the
operational space. Nakamura et al. [4] proposed a method
to control the resultant force and the internal force, where
the resultant force is the force vector contributing directly
to the motion of the object and the internal force
represents the part of the force vector which does not
affect the motion. Hsu [5] developed a coordinated
control law for a multi-robot system performing part-
mating tasks. This control law includes motion and
internal force control and a load distribution method.

Uchiyama and Dauchez [6] redefined the workspace
coordinates and the joint space coordinates and
formulated kinematics of two coordinated arms. They
used these kinematic formulas to control the internal force
and also the motion of the object. Kreutz and Lokshin [7]
pointed out that the number of lost degrees of freedom
due to the imposition of the closed loop kinematic
constraints is related to the number of degrees of freedom
gained by controlling the internal force of the closed chain
system. Itoh, Murakami, and Ohnisni [8] suggested
another approach to control cooperative robots and to
manipulate an object being grasped. In this method, grasp
and acceleration forces of end-effector are first calculated,
and then by using backward iteration, the required joint
torques of manipulators are found. Finally, a work space
observer is adopted so that tip deflections are corrected.
Thus, the control structure is simplified, and it may be
possible to utilize decentralized control technique for the
cooperative manipulators. Liu [9] developed a robust
control method for a planar dual-arm manipulator system.
Considering the contact and friction constraints for the
grasp conditions, a robust controller was proposed using a
switching-sliding algorithm for modeling imprecision and
disturbances. Azadi, Eghtesad and Gharesifard [10]
applied inverse dynamics control to a cooperative
manipulator system with two 5 DOF arms. Nagchaudhuri
and Garg [11] investigated the use of adaptive control and
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impedance control for a contact task involving multiple
robots handling a common heavy object. Uncertainties
associated with the payload as well as dynamic
characteristics of the robots were also considered.
Kawasaki and Ito [12], [13] presented two adaptive
coordinated control methods for multiple robot arms
grasping a common object firmly. In their controllers,
dynamic parameters of both object and robot arms are
estimated online. The desired motions of the robot arms
are generated by an estimated object reference model. The
control methods need measurement of only positions and
velocities of the object and robot arms while measurement
of forces and moments at contact points are not required.
Uzmay, Burkan and Sarikaya [14] opened another study
on application of adaptive and robust control methods to a
cooperative manipulation system, which was developed
for handling an object by two-link planar robot
manipulators. Adaptive control algorithm ensures a
parameter adaptation law satisfying the stability
conditions of uncertain systems. In designing robust
control structure, contact and friction constraints for grasp
and bearing conditions are considered as the uncertainties
that determine the available values of control parameters.
Also, Damaren [15] studied an adaptive control scheme
for two flexible robot manipulators.

When the parameters of the system are unknown we
may use adaptive or robust control schemes. One of the
attractive features of the adaptive controllers is that the
control implementation does not require a priori
knowledge of unknown constant or slowly varying system
parameters. In a robotic system some of the parameters
such as payload mass or friction coefficients are difficult
to compute or measure; therefore, using adaptive control
schemes represents an important step toward high-
speed/precision  robotic  applications  [16]. Two
disadvantages of adaptive controllers are: 1) large amount
of online calculation is required (especially for higher
DOF robots) and 2) they lack adequate robustness to
additive bounded disturbances [16].

Two of the attractive features of the robust controllers
are 1) on-line computation is kept to minimum and 2) they
enjoy inherent robustness to additive bounded
disturbances [16]. One of the disadvantages of the robust
control approaches is that these controllers require a
priori known bounds on the uncertainty. In general,
calculation of bounds on uncertainty can be quite a
tedious process since this calculation involves finding the
maximum values for the inertia and friction related
constants for all links of each robot manipulator. Another
disadvantage of the robust control approaches is that even
in the absence of additive bounded disturbances,
asymptotic stability of the tracking error cannot be
guaranteed; while in general, it would be desirable to
obtain at least a “theoretical” asymptotic stability result
for the tracking error [16].

In this paper, an adaptive-robust control scheme has
been used that can be though of as combining the best
qualities of the adaptive controllers and the robust
controllers. This control approach has the advantages of:
1) reduced on-line calculations (compared to the adaptive
control methods), 2) robustness to additive bounded
disturbances, 3) no need to a priori knowledge of system
uncertainty, 4) simplicity of the control commands and 5)
asymptotic tracking error performance.

In this paper, in section 2, the equations for kinematics
and dynamics of a dual-arm system while manipulating a
common rigid payload, which is grasped clamped-
clamped are obtained. The presented dynamic model for
the system, section 3, is based on Lagrange's formulation.
In addition, the kinematic constraints are introduced in the
model. As the main point, in section 4, application of an
adaptive-robust control scheme is proposed for tracking
the desired paths for two manipulator end-effectors in the
presence of disturbance and uncertainties. The simulation
results and conclusions are presented in sections 5 and 6,
respectively.

2. KINEMATICS [10, 17]

Consider a rigid body manipulated by two robots. To
mathematically describe the motion of the object, a non-
inertial coordinate frame O-xyz is attached to the object
whose origin, O, is located at the mass center of the object
(see Fig. 1). The object motion is represented by the
motion of the coordinate frame O-xyz with respect to the
inertial frame b-XYZ.

We may define:

s=|pr ot M

as the position/orientation of the ith robot, (i=1,2) end
effector. The position P is a 3x1vector and if we utilize

the “clamped-clamped” model for grasp conditions, then

the position of the mass center of the rigid body can be

determined by:

P = Ry+"R, (0)"r; 2
where By is the position vector of object center of

mass, and OR;, (0) denotes the rotation matrix of the body

0

frame both relative to inertial frame; "7 denotes the

position vector of end-effector i in the body frame. The
orientation vector ;(3x1) of the ith end-effector is given

by:

0, = 0+°¢, €)
where °6; is an orientation vector corresponding to the

initial configuration of the end effector i and € denotes

the orientation of the object frame (O-xyz) with respect to

the  inertial  frame  (b-XYZ). By  defining

Xy = [POT 6" ]T as the position/orientation vector of the

object and combining (2) and (3), we can write
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0 0 4).
,=xo+{ A V’} i=1,2

Differentiating (4) leads to

SR 5).
ip=| Ty RO

o 0
Equation (5) can be rewritten in the following form:
X; =Ry, (0)xg i=1,2 (6)
where

(0., (7
RO,- (6) — |:I3><3 Az (6, 4 ):|
3x3 ]3><3

in which /75,3 and 03,3 are 3x3 identity and zero
matrices, respectively, and
"Ry ()
= i
dt

Let ¢; be the vector of joint displacements and
J 4, (4;) be the Jacobian matrix of robot 7; the joint space

®)

4,0.°r)0 i=1,2

velocity vector is related to the object velocity vector by:

G; =J 4 Ry, %, i=1,2 )

Defining x= [qlT qZT xg ]T as the combined
coordinate vector, we obtain the following equation:
J(x)x=0 (10)

where J(x) is the Jacobian matrix of the whole system,
expressed by

J 4, (q1)
06xn

an

0 —Ry, (0
J(x)=|: 6xn 01( ):|

J4,(@2) =R, (0)

where 7 is the degrees of freedom of a single robot.
The relation between joint space acceleration and the

acceleration of the object can be obtained by
differentiating (9) with respect to time as:
G; = J 34 Ro, %o +J 3 R, +J 4 Ry, %, i=1,2 (12)
3. DynAMmICS [16-18]
A. Dynamics of Manipulators

By wusing Lagrange’s formulation, the dynamic

equations of the ith robot motion may be obtained in
terms of the joint coordinates:

.. L. T
M;i(9:)q; +Ci(4;,41)4; +Gi(gi) =7 +J 4 F;
the

(13)

where M (g;) denotes robot inertia matrix,

C.(g;,q;) denotes the matrix of Coriolis and centrifugal

effects, G; (g, ) is the vector of gravitational terms and 7,
is the vector of generalized joint torques/forces. The term
Fdenotes the force/moment vector exerted on end-

effector i by the payload measured at the origin of the
end-effector frame and expressed in the base frame of the
ith robot. Equation (13) can aslo be rewritten in the form

of
. -1 '
qi =M; (q;)(z; —7;) (14)
where 7; denotes the torque contribution depending on
joint positions and velocities:

' . . T
7 =Ci(4::9)4; + Gi(g:) +J . Fi (15).
B. Object Dynamics
Kinetic energy of the object is
1 1 (16)

T s T
KE=—mP P +—w l,0
2 2

where m is the object mass, P"is the linear velocity of
object the center of mass, @ is the angular velocity of the
object, and 7, represents the object inertia tensor relative
to its center of mass when expressed in the inertial frame.
Potential energy of object is
U =mgz, a7
where g is gravitational acceleration and z,, is z coordinate
of object center of mass in the inertial frame. Then, the
Lagrangian of the object is:

L:T—U:%mP*TP* +%a)TIWa)—mgzo

(18).

The power provided by the external forces/torques must
be equal to the provided power by the generalized forces
in the mass center of object for a nondissipative system,
so:

-F'v,-Ffv, =FTy, (19)
where F; denotes the forces and moments exerted by the
object on robot i measured at the origin of the ith end-
effector frame and expressed in the inertial frame;
11,V5,V, are velocity vectors of end effectors 1, 2 and
object, respectively.

Substituting (6) in (19), we obtain:

(_FITTﬁl Ry, - FZTTﬁz Ry, )Xo = FTT.fro X (20)

where for RPY angles T P is the nxn identity matrix,
1
[18]. Solving (20) for F, we obtain:

2 @1).
T T T
F=-T (SRIT,F)

Substituting (18) and (21) in the Lagrange’s formulation,
we can obtain the dynamics of object in the inertial frame

as follows [10, 17]:
Ho(xO)jéO +B0(x0’x0)x0 +8, = _GwlF‘l _GW2F2
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T
H,(x,)= T.ﬁ’o WMonro (23)
and
w |:m X 13><3 03><3 :| (24)
M, =
03><3 IW
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2, =100 mg Op]” 25
with

T pT T
GWl - Tfro ROi T i

where o and i refer to object and ith robot, respectively.

i=1,2 (26)

C. Dynamic Model of the Cooperative System
When the vectors F; and F, are calculated from (13)

and substituted into (22), we have:

H, (x0)Xo + B, (xg,X0)%y + &, =

- R()T,JEIT[Ml(‘IOC.I.l +Ci(q1,9)0 + Gi(q1) — 7]
~_R0T2 JATZT (M1(q2)d> + Co(92592)92 + Go(q2) — 73]
Substituting (9) and (12) in (27), the following equation
will be obtained.

27

T T -1 T ,-T -1 .
[H,+RoJ 4 M\J3' Ry + Ry J 3T MaJ 31 Ry 1, (28).
T y-T -1 T +-T -1
H[B, + Ry Sy CJ 4 Ry, + Ry, J 4, CoJ 4, Ry, +
RG T M TRy + RS T, M, TRy 1,
+[g, +Rg,J 4 G+ R, T4 G, =
LIRS J 4 7+ Ry, J ! 75]
Define the following matrices:
M=H,+RyJ, M\J, Ry +Ry, T M, T )R, (29)
Val T -T -1 T T -1
C = Bo +R0|JA| CIJA| ROI +R02JA2 CZJAZROZ + (30)
T -T -1 T T -1
RG T M TR, + RS T TM, TR,
el T +-T T ;-T
G=g,+R}J G +R},J G, €2y
= T +-T T +-T
T=RoJy 11+ Ry, J 57, (32

Therefore, (28) can be rewritten in the following form.

Miy+Ciy+G=71 (33)

The vector 7 is composed of two vectors z; and 7,:

-t -]
) %)

Where

W, = RpI3

i=1,2 (3%5)

Taking pseudo inverse of W, the vectors T, and 1, can be
obtained as:

[‘rlT Z'2T ]T =wtr
In equation (36), the 6x1vector, 7, is obtained from two

(36)

vectors, 7; and 7,, with 2n parameters, so we may

consider some simplified or regular optimization process
for calculation of the vector 7 .

D. Properties of the Dynamic Matrix Equation
Since M|, M, and H , are

positive  definite  and

considering the properties of Jacobian matrices J 4 and

Ry, , we can show that M is a positive definite matrix.

Taking time derivative of (29) and using (30), the
following equation can be obtained:

M -2C = (1, -2B,)+ R J;T (M, ~2C)J R, + 7
RS TS (M, —2C) TR,
Since the matrices, M1 -2Cy, M2 -2C, and

H, - 2B, are skew-symmetric, M -2C is also skew-

symmetric. In addition, it can be shown that M is upper
and lower bounded.

ey, < M| < Ky

where k,, (ky<oo) denotes the strictly positive minimum

(3%

(maximum) eigenvalue of M for all configurations xq,

Also, from the robots and object properties, it can be
shown that the dynamic matrix equation (33), is linear in
dynamic parameters [16-18]:

M3, +Cxy+G=Yp (39)
where
Y = [RorleflTYl R, J 5 Ys YOJ (40)

and p is the vector of parameters of the system and is
equal to:

—_|r r r (41)
pP= [Pl P2 Po ]r

where p1, p; and p, are the vectors of dynamic parameters

of the robots 1 and 2 and the object.

Since theC;,G;,B,and g, matrices are upper

bounded, it is obvious that C and G matrices are also
upper bounded:

[C] <k JF | and|G] <,

for some positive constants k. and k,.

(42)

4., CONTROLLER DESIGN

A fundamental task in robotic applications is to
transfer objects either on a desired path or from one point
to another point. The control problem for manipulators is
inherently nonlinear because the dynamics of a robot is
highly nonlinear. This means that a nonlinear control
theory must be used in order to control a manipulator
motion. In this section we describe the proposed control
algorithm for trajectory tracking of two cooperative robot
manipulators to move a rigid payload.

A. Adaptive-Robust Controller Design

In order to present an adaptive robust control method
for a (robotic) system, one may begin with an adaptive
algorithm and then try to make it robust with regard to
some uncertainty and disturbances. Also, one can start
with a robust controller by using some bounds on the
uncertainty and disturbances and then use an adaptive
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mechanism to estimate the bounds (not the uncertainty or
disturbances) [16]. We use the latter in this paper.

A.1 Robust Controller Design

Let us begin with a robust approach for mechanical
arm dynamics, equation (39), and then put forward an
adaptive law for bounds estimation.

Robust passivity based control law for the system of
Eq. (2), has been suggested as follows [18]:
?:A;[é‘+é§+é—KD0'+u0 (43)
where M , C s G have the same forms as M , CandG s
respectively, but with estimated parameters, Kp is a
constant positive definite matrix, and
¢ =X, — AX (44)

U:).Co—g":x';o-i-/l;o (45)
where 4 is a constant positive definite matrix, xq , is the
desired trajectory and Xo =xq —xg, is the vector of

position tracking error.
Equations (39) and (43) give:

Md+éG+KDU:vT/+u0 (46)
where

W=Yp=(M-M)+(C-C)+(G-G) (47)
and

p=p-p (48)

in which f) and p are the vectors of estimated and exact

base dynamic parameters of the system, respectively. It
has been shown that the Lyapunov

function, V' = AGT Mo, has negative semi-definite time

derivative if u, is chosen as [18]:

uy = (" /)0 (49)
Also, uy can be considered as [16]:
uy ==7* [(s + ol (50)

when ¢ is a vector of real positive valued functions and
[ <7 1)
where, from the properties of section 3.D, # can be written
as [18]:

7= g + oo + a2||x*0 || + a3||;0||2 (52)
or [16]:
1=+l + Sl = Y

2
I e el s, & 61" =58
where e=[X, xi,] , and (when only revolute joints are
used) the constant bounds ¢,’s and J,’s depend on Kp, 4,

desired trajectory, M s C and Gand can be a priori

calculated in a complicated and lengthy process [18].

A.2 Modification of the Robust Controller Design by
Adaptation of the Parameters

In order to include an adaptive mechanism in a system,
first, there should be recognized some uncertain
parameters to be estimated on-line. These parameters, in

our case, could be either/%, estimated base dynamic

parameters of the system, or @, the vector of estimation of
the constant bounds of #. To estimate a fewer number of
unknowns, one may choose the vector of uncertain

bounds, 6. But, a difficulty arises when choosing 0 and
notf). This difficulty takes place since the terms /L) are

not estimated anymore and, therefore, cannot be used in
equation (43). To deal with this problem and to make the
controller (torque) commands simpler, one may modify
the controller law of equation (43) as:

T=-Kpo+uy, (54).
Equations (39) and (54) give:
M6é+Co+Kpo=-ME-Cé—G +uy = (55).

—Yp+uy=w +u,
where w’, like w, is bounded because of the system
properties of section 3.D as:

[w]|<n (56).

Note that, because of the properties of the system
dynamics, the current forms of equations (52) or (53) do
not need to be changed, although the constant bounds do
not have their previous values. These bounds can be
updated by the following well-known adaptation
mechanism [16]:

0=0 =15l °7

where y is a positive definite matrix, & =6 -8, andn
and 77 =77 -7 can be defined as:
h=56 , 7i=50 (58).
B. The Stability Analysis

The following Lyapunov function can be used for the
stability analysis of the system:

Vi vs AT, -1 -1
Vz%a M0'+%6’ vy 0+K, ¢ (39
where K, is a positive definite matrix.
Tacking time derivative of equation (64) leads to:
(60).

V:1/20'TA70'+6TA70"+§T7,71§+k;1é
Substituting the control law (54) in dynamic matrix
equation of the robotic system leads to:

(61).
By substituting equations (57) and (61) into equation
(60), the following equation is obtained:

Mo=-Co-Kpo+w—ug
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V= —O'TKDG - S§||O'|| + O'T(w'—uo) + (62)

Klev1/26" (M -2C)o
where the last term in equation (62) is equal to zero
because of skew symmetry property of M-2C. By
considering equations (53) and (56), we can show that:
V< —O'TKDO'—S§||O'||+S6’||0'||—O'Tu0 +k;1é (63).
By assuming & =-K ¢, to make sure ¢ will have a

stable and convergent behavior, and substituting
equations (50) and (58) into equation (63), this equation is
rewritten as:

: A T 9)2 64
VS—GTKD0—3+S6’||0||—GAUﬂ (©9
S 9"0‘" +¢
or,
2 .0h\2 (65).
. A Sé
V<-oc'Kpo-e+ S9||0'||—M
SO|o]|+ &
By simplifying the above equation, we will have:
S, £50]o] (66).
V<-c'Kpo—-e+—F——
A 6?"0'" +é&

As the summation of the last two terms in equation (66) is
less than zero the following inequality is obtained:

V<-olK Do
Therefore, one may write:
V < —Amin (K p o]

where 4 is the smallest eigenvalue of matrix K . This

(67)

(68)

implies that:

% 69).
V(0) =V () 2 Ain [[|o(0)]dt )
0

Since V' is negative semi-definite, it can be stated that
V' is a non-increasing function and, therefore, it is upper
bounded by 7(0), then:

Amin I"’”(U)"do' <o or 1/ I"a(t)"zdt <o
0 0

which shows o e L. To establish a stability result for the

(70)

position tracking error, X,, one, by using Eq. (45), may
write the transfer function relationship between the
tracking error and the filtered tracking error, o, as:

%,(5) = G(s).0(s) = (s + A) o (s) (71)
where s is the Laplace variable. Since G(s) is a strictly
proper, asymptotically stable transfer function and
o e L3, one may conclude that, [16-18]:

lim (72).
t—0

Therefore, the position tracking error, X, and also the

%, =0

velocity tracking error, ?0, converge asymptotically to

ZEro.

As it is seen for this control scheme, equations (45),
(53) and (54), there is only need to measure positions and
velocities and we don’t need to measure the force and
torque reactions and also the joints and object
accelerations. This makes the controller a simple and
efficient one.

5. SIMULATION

Since we have two similar robot manipulators in our
lab each with 5 DOF, see figures 2 and 3, the simulation
is performed on the system consisting of a rigid object
grasped firmly by these two robots. Kinematic and
dynamic parameters of the RRRRR robot manipulators
are given in Tables (1), (2), respectively. The object is a
rigid plate with the following specifications:

1, =0.16(m),w, =0.1(m),m, =0.25(kg) , where /,,w,

and m,

respectively.

The vectors for positions/orientations of the end
effectors relative to the center of mass of the rigid object
in the inertial frame are:

% =[-008 0 of, %, =[0.08 0 of
%, =[o 0 -z/2]",%,=[0 0 z/2]
The

are length, width and mass of the plate,

base frame of robot 2 is located at

P

origing = [0.5 0 O]T meters apart from the base frame

of robot 1 (the inertial frame). Then, the rotation matrices
of robots 1 and 2 with respect to the inertial frame are:

-1 0 0
"Ry, =133, "Ry, =| 0 -1 0.
0 0 1

A similar input disturbance equal to 0.Isin(nt/T)t has
been added to the elements of 7 (where T is the total time
and 7 is the vector of input torques).

The desired path is designed from the initial
position/orientation of the rigid object center of mass,

oy =10-12 002 0.15 0 01"
to its final position/orientation,
X, =[0.15 0 0.1 03 0.1 0]".

0 final

Because the Jacobian matrices are not square for 5
DOF robots, the dynamic equations of motion for two 5
DOF arms are more complicated than those of two 6 DOF
robotic arms. Also, because of the grasp constraints, the
object can move on 4 DOF trajectories. To have a 4 DOF
trajectory, as an example, the motion in y direction and
the rotation about z axis are limited and both variables
remain constant, and therefore, they will not be shown in
the figures.

In order to compare the adaptive-robust control scheme
with another controller, an adaptive control design, [16-
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18], which is, in many aspects, comparable to the
adaptive-robust controller is chosen. Figs. 4 to 11
illustrate the Cartesian position in X and Z coordinates and
the orientation in terms of RPY angles, @ and 6, about X
and Y axes, for the rigid plate when an adaptive and an
adaptive-robust control scheme are applied to the system
and their corresponding desired values in the inertial
frame. From these figures, it is obvious that the adaptive-
robust control scheme has robustness against
disturbances. Also, it performs better and needs update of
a fewer number of parameters, which makes it more
efficient and faster, in compare to its adaptive counterpart.

6. CONCLUSION

The kinematics and combined dynamics of a dual arm
system consisting of two RRRRR robots and a rigid plate
in operational space have been developed. Furthermore,
an adaptive-robust control method was proposed for
trajectory tracking of the rigid plate and consequently the
robots. The proposed controller does not need to measure
the force and torque reactions at contact points between
end-effectors and rigid body and also there is neither body
nor joint acceleration measuring requirement.

In order to show the validity of the proposed control
method, a numerical simulation was performed and its
results are presented for trajectory tracking of the
cooperating robotic system.

The adaptive-robust control has the advantages of both
adaptive and robust control schemes, among its merits are
the simplicity of this controller and its robustness against
disturbances.

7. TABLES AND FIGURES

TABLE 1
DENAVIT- HARTENBERG KINEMATIC PARAMETERS OF THE ROBOTS
Join 0; d, [mm] a; o
t [rad] ! [mm] [rad]
1 0, 125 0 -n/2
2 0, 0 200 0
3 03 0 200 0
4 0,4 0 0 -m/2
5 05 148 0 0
TABLE 2
DYNAMIC PARAMETERS OF THE ROBOTS
Moments of inertia (kg.m?)
Lin Mass
k No. (kg) b by L.
1 1.9 1.05 0.722 0.707
2 1.6 0.27 4.4 4.349
3 1.3 0.035 0.619 0.614
4 0.6 0.0397 0.0417 0.008
5 0.45 0.228 0.222 0.022

Figure 1: Non-inertial coordinate frame O-xyz and inertial frame
b-XYZ.

Figure 2: A 5 DOF RRRRR robot manipulator.
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for position of the object’s center of mass along Z axis vs. time.
Figure 4: Tracking performance of an adaptive control scheme 0.32

for position of the object’s center of mass along X axis vs. time. 03
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Figure S5: Tracking performance of an adaptive-robust control
scheme for position of the object’s center of mass along X axis
vs. time.
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Figure 11: Tracking performance of an adaptive-robust scheme

for orientation of the object about Y axis vs. time.
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