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ABSTRACT 

In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a 
cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired 
initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the 
dual arm system. Then, dynamics of the system and the relations between forces/moments acting on the 
object by the robots, using different Jacobian matrices, are derived.  The proposed control method is a 
position control approach; therefore, it does not need the complexity of measurement of forces and moments 
at the contact points. Simulation results are provided to illustrate the performance of the control algorithm.  
The robustness of the proposed control scheme is verified in the presence of disturbance and uncertainty. 
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1.  INTRODUCTION 

The robotic systems consisting of multiple robots have 
more capacity than the single robot for the tasks such as 
handling heavy materials and assembly. Many researchers 
have studied the coordinated control of multiple robot 
arms actively. When multiple robots grasp one object, the 
robotics system forms a closed chain mechanism that is 
extremely nonlinear and coupled.  

Some control approaches specify the object motion 
with regard to the independent robot arm actions, and 
transform object trajectory into the individual robot end-
effector trajectory. In addition to these approaches, Hayati 
[1] extended the Raibert and Craig’s [2] position and 
force control scheme to multiple coordinated robot arms. 
Khatib [3] developed a control scheme for nonredundant 
robotic arms based on the dynamic model in the 
operational space. Nakamura et al. [4] proposed a method 
to control the resultant force and the internal force, where 
the resultant force is the force vector contributing directly 
to the motion of the object and the internal force 
represents the part of the force vector which does not 
affect the motion. Hsu [5] developed a coordinated 
control law for a multi-robot system performing part-
mating tasks. This control law includes motion and 
internal force control and a load distribution method. 

Uchiyama and Dauchez [6] redefined the workspace 
coordinates and the joint space coordinates and 
formulated kinematics of two coordinated arms. They 
used these kinematic formulas to control the internal force 
and also the motion of the object. Kreutz and Lokshin [7] 
pointed out that the number of lost degrees of freedom 
due to the imposition of the closed loop kinematic 
constraints is related to the number of degrees of freedom 
gained by controlling the internal force of the closed chain 
system. Itoh, Murakami, and Ohnisni [8] suggested 
another approach to control cooperative robots and to 
manipulate an object being grasped. In this method, grasp 
and acceleration forces of end-effector are first calculated, 
and then by using backward iteration, the required joint 
torques of manipulators are found. Finally, a work space 
observer is adopted so that tip deflections are corrected. 
Thus, the control structure is simplified, and it may be 
possible to utilize decentralized control technique for the 
cooperative manipulators. Liu [9] developed a robust 
control method for a planar dual-arm manipulator system. 
Considering the contact and friction constraints for the 
grasp conditions, a robust controller was proposed using a 
switching-sliding algorithm for modeling imprecision and 
disturbances. Azadi, Eghtesad and Gharesifard [10] 
applied inverse dynamics control to a cooperative 
manipulator system with two 5 DOF arms. Nagchaudhuri 
and Garg [11] investigated the use of adaptive control and 
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impedance control for a contact task involving multiple 
robots handling a common heavy object. Uncertainties 
associated with the payload as well as dynamic 
characteristics of the robots were also considered. 
Kawasaki and Ito [12], [13] presented two adaptive 
coordinated control methods for multiple robot arms 
grasping a common object firmly. In their controllers, 
dynamic parameters of both object and robot arms are 
estimated online. The desired motions of the robot arms 
are generated by an estimated object reference model. The 
control methods need measurement of only positions and 
velocities of the object and robot arms while measurement 
of forces and moments at contact points are not required. 
Uzmay, Burkan and Sarikaya [14] opened another study 
on application of adaptive and robust control methods to a 
cooperative manipulation system, which was developed 
for handling an object by two-link planar robot 
manipulators. Adaptive control algorithm ensures a 
parameter adaptation law satisfying the stability 
conditions of uncertain systems. In designing robust 
control structure, contact and friction constraints for grasp 
and bearing conditions are considered as the uncertainties 
that determine the available values of control parameters. 
Also, Damaren [15] studied an adaptive control scheme 
for two flexible robot manipulators. 

When the parameters of the system are unknown we 
may use adaptive or robust control schemes. One of the 
attractive features of the adaptive controllers is that the 
control implementation does not require a priori 
knowledge of unknown constant or slowly varying system 
parameters. In a robotic system some of the parameters 
such as payload mass or friction coefficients are difficult 
to compute or measure; therefore, using adaptive control 
schemes represents an important step toward high-
speed/precision robotic applications [16]. Two 
disadvantages of adaptive controllers are: 1) large amount 
of online calculation is required (especially for higher 
DOF robots) and 2) they lack adequate robustness to 
additive bounded disturbances [16]. 

Two of the attractive features of the robust controllers 
are 1) on-line computation is kept to minimum and 2) they 
enjoy inherent robustness to additive bounded 
disturbances [16]. One of the disadvantages of the robust 
control approaches is that these controllers require a 
priori known bounds on the uncertainty. In general, 
calculation of bounds on uncertainty can be quite a 
tedious process since this calculation involves finding the 
maximum values for the inertia and friction related 
constants for all links of each robot manipulator. Another 
disadvantage of the robust control approaches is that even 
in the absence of additive bounded disturbances, 
asymptotic stability of the tracking error cannot be 
guaranteed; while in general, it would be desirable to 
obtain at least a “theoretical” asymptotic stability result 
for the tracking error [16]. 

In this paper, an adaptive-robust control scheme has 
been used that can be though of as combining the best 
qualities of the adaptive controllers and the robust 
controllers. This control approach has the advantages of: 
1) reduced on-line calculations (compared to the adaptive 
control methods), 2) robustness to additive bounded 
disturbances, 3) no need to a priori knowledge of system 
uncertainty, 4) simplicity of the control commands and 5) 
asymptotic tracking error performance.  

In this paper, in section 2, the equations for kinematics 
and dynamics of a dual-arm system while manipulating a 
common rigid payload, which is grasped clamped-
clamped are obtained. The presented dynamic model for 
the system, section 3, is based on Lagrange's formulation. 
In addition, the kinematic constraints are introduced in the 
model.  As the main point, in section 4, application of an 
adaptive-robust control scheme is proposed for tracking 
the desired paths for two manipulator end-effectors in the 
presence of disturbance and uncertainties. The simulation 
results and conclusions are presented in sections 5 and 6, 
respectively. 

2.  KINEMATICS [10, 17] 

Consider a rigid body manipulated by two robots. To 
mathematically describe the motion of the object, a non-
inertial coordinate frame O-xyz is attached to the object 
whose origin, O, is located at the mass center of the object 
(see Fig. 1). The object motion is represented by the 
motion of the coordinate frame O-xyz with respect to the 
inertial frame b-XYZ. 

We may define: 

[ ]TT
i

T
ii Px θ=  (1)  

as the position/orientation of the ith robot, (i=1,2) end 
effector. The position iP  is a 13× vector and if we utilize 
the “clamped-clamped” model for grasp conditions, then 
the position of the mass center of the rigid body can be 
determined by: 

ibi rRPP 00
0 )(θ+=  (2)  

where 0P  is the position vector of object center of 

mass, and )(0 θbR denotes the rotation matrix of the body 

frame both relative to inertial frame; ir
0  denotes the 

position vector of end-effector i in the body frame. The 
orientation vector )13( ×iθ  of the ith end-effector is given 
by: 

ii θθθ 0+=  (3)  

where oθi is an orientation vector corresponding to the 
initial configuration of the end effector i and θ  denotes 
the orientation of the object frame (O-xyz) with respect to 
the inertial frame (b-XYZ). By defining 

[ ]TTTPx θ00 = as the position/orientation vector of the 
object and combining (2) and (3), we can write 
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Differentiating (4) leads to 
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(5).  

Equation (5) can be rewritten in the following form: 
00 )( xRx ii && θ=          i=1,2 (6)  

where  

⎥
⎥
⎦

⎤

⎢
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⎡
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××

×

3333

0
33

0 0
),()(

I
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θθ  

(7)  
  

in which 33×I  and 330 ×  are 33×  identity and zero 
matrices, respectively, and 

i
b

ii r
dt

Rd
rA 0

0
0 )(

),(
θ

θθ =&           i=1, 2 
  (8)  

Let qi be the vector of joint displacements and 
)( iA qJ i

 be the Jacobian matrix of robot i; the joint space 

velocity vector is related to the object velocity vector by: 

00
1 xRJq iiAi && −=     i=1,2    (9)  

Defining [ ]TTTT xqqx 021=  as the combined 
coordinate vector, we obtain the following equation: 

0)( =xxJ &  (10)  
where J(x) is the Jacobian matrix of the whole system, 

expressed by 
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where n is the degrees of freedom of a single robot.  
The relation between joint space acceleration and the 

acceleration of the object can be obtained by 
differentiating (9) with respect to time as: 

00
1

00
1

00
1 xRJxRJxRJq iiAiiAiiAi &&&&&&&& −−− ++=         i=1,2 (12)  

3.  DYNAMICS [16-18] 

A.   Dynamics of Manipulators 
By using Lagrange’s formulation, the dynamic 

equations of the ith robot motion may be obtained in 
terms of the joint coordinates: 

i
T
Aiiiiiiiiii FJqGqqqCqqM

i
+=++ τ)(),()( &&&&  (13)  

where )( ii qM denotes the robot inertia matrix, 
),( iii qqC & denotes the matrix of Coriolis and centrifugal 

effects, )( ii qG is the vector of gravitational terms and iτ  
is the vector of generalized joint torques/forces. The term 

iF denotes the force/moment vector exerted on end-
effector i by the payload measured at the origin of the 
end-effector frame and expressed in the base frame of the 
ith robot. Equation (13) can aslo be rewritten in the form 

of 
))((1

iiiii qMq ττ ′−= −&&  (14)  

where iτ ′  denotes the torque contribution depending on 
joint positions and velocities: 

i
T
Aiiiiiii FJqGqqqC

i
++=′ )(),( &&τ  (15).  

B.  Object Dynamics 
Kinetic energy of the object is 

ωω w
T IPPmEK

T

2
1

2
1. ** += &&  (16)  

where m is the object mass, *P& is the linear velocity of  
object the center of mass, ω  is the angular velocity of the 
object, and wI represents the object inertia tensor relative 
to its center of mass when expressed in the inertial frame. 
Potential energy of object is 

omgzU =  (17)  
where g is gravitational acceleration and oz is z coordinate 
of object center of mass in the inertial frame. Then, the 
Lagrangian of the object is: 

ow
TT mgzIPPmUTL −+=−= ωω

2
1

2
1 ** &&  (18).  

The power provided by the external forces/torques must 
be equal to the provided power by the generalized forces 
in the mass center of object for a nondissipative system, 
so: 

02211 VFVFVF TTT =−−  (19)  

where iF denotes the forces and moments exerted by the 
object on robot i measured at the origin of the ith end-
effector frame and expressed in the inertial frame; 

021 ,, VVV  are velocity vectors of end effectors 1, 2 and 
object, respectively.  

Substituting (6) in (19), we obtain: 

0020221011 )( xTFxRTFRTF ofr
T

fr
T

fr
T && =−−  (20)  

where for RPY angles 
ifrT  is the n×n identity matrix, 

[18]. Solving (20) for F, we obtain: 

∑−=
=

− 2

1
0 )(

i
i

T
ifr

T
i

T
ofr FTRTF  

(21).  

Substituting (18) and (21) in the Lagrange’s formulation, 
we can obtain the dynamics of object in the inertial frame 
as follows [10, 17]: 

221100000 ),()( FGFGgxxxBxxH wwooo −−=++ &&&&   

(22) 
Where 

oo fro
wT

froo TMTxH =)(  (23)  

and 

⎥
⎦
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3333  
(24).  
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T
o Omgg ]00[ 31×=    (25)   

with 
T
ifr

T
i

T
ofrw TRTG 01

−=           i=1,2    (26)  

where o and i refer to object and ith robot, respectively. 

C.  Dynamic Model of the Cooperative System 
When the vectors F1 and F2 are calculated from (13) 

and substituted into (22), we have: 
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(27)  

Substituting (9) and (12) in (27), the following equation 
will be obtained. 
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(28). 

Define the following matrices: 

20
1
2222010

1
11110 RJMJRRJMJRHM A

T
A

T
A

T
A

T
o

−−−− ++=  

•
−−

•
−−
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+

+++=

22221111
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0
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0
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1
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A
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A
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A
T

A
T

A
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o
 

(29)  
  

(30)  

 

22201110 GJRGJRgG T
A

TT
A

T
o

−− ++=  (31)  

 

22201110 τττ T
A

TT
A

T JRJR −− +=  (32)  

Therefore, (28) can be rewritten in the following form. 
τ=++ GxCxM 00 &&&  (33)  

The vector τ is composed of two vectors τ1 and τ2: 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

2

1
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1
21 τ

τ
τ
τ

τ WWW  
(34)  

Where 
2,10 == − iJRW T

iA
T
ii  (35)  

Taking pseudo inverse of W, the vectors τ1 and τ2 can be 
obtained as: 

[ ] τττ += W
TTT

21  (36)  

In equation (36), the 6×1vector, τ , is obtained from two 
vectors, 1τ  and 2τ , with 2n parameters, so we may 
consider some simplified or regular optimization process 
for calculation of the vectorτ .  

D.  Properties of the Dynamic Matrix Equation 
Since 1M , 2M and oH are positive definite and 

considering the properties of Jacobian matrices iAJ and 

iR0 , we can show that M  is a positive definite matrix. 

Taking time derivative of (29) and using (30), the 
following equation can be obtained: 

2222

1111

0
1

220

0
1

110

)2(.

)2()2(2

RJCMJR

RJCMJRBHCM

A
T

A
T

A
T

A
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oo

−−

−−

−+

+−+−=−

&

&&&

 
(37) 

Since the matrices, 11 2CM −& , 22 2CM −&  and 

oo BH 2−&  are skew-symmetric, CM 2−&  is also skew-
symmetric. In addition, it can be shown that M is upper 
and lower bounded. 

Mm kMk ≤≤    (38)  

where km (kM<∞) denotes the strictly positive minimum 
(maximum) eigenvalue of M for all configurations x0. 

Also, from the robots and object properties, it can be 
shown that the dynamic matrix equation (33), is linear in 
dynamic parameters [16-18]: 

ρYGxCxM =++ 00 &&&  (39)  

where 
[ ]o

T
A

TT
A

T YYJRYJRY 22201110
−−=  (40)  

and ρ  is the vector of parameters of the system and is 
equal to: 

[ ]TT
o

TT ρρρρ 21=  
(41)  

where ρ1, ρ2 and ρ0 are the vectors of dynamic parameters 
of the robots 1 and 2 and the object. 

Since the iC , iG , oB and og  matrices are upper 

bounded, it is obvious that C and G matrices are also 
upper bounded: 

2~
oc xkC ≤  and gkG ≤  (42) 

for some positive constants kc and kg.  

4.  CONTROLLER DESIGN 

A fundamental task in robotic applications is to 
transfer objects either on a desired path or from one point 
to another point. The control problem for manipulators is 
inherently nonlinear because the dynamics of a robot is 
highly nonlinear. This means that a nonlinear control 
theory must be used in order to control a manipulator 
motion. In this section we describe the proposed control 
algorithm for trajectory tracking of two cooperative robot 
manipulators to move a rigid payload. 

A.  Adaptive-Robust Controller Design 
In order to present an adaptive robust control method 

for a (robotic) system, one may begin with an adaptive 
algorithm and then try to make it robust with regard to 
some uncertainty and disturbances. Also, one can start 
with a robust controller by using some bounds on the 
uncertainty and disturbances and then use an adaptive 
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mechanism to estimate the bounds (not the uncertainty or 
disturbances) [16]. We use the latter in this paper. 

 
 

A.1 Robust Controller Design 
Let us begin with a robust approach for mechanical 

arm dynamics, equation (39), and then put forward an 
adaptive law for bounds estimation. 

Robust passivity based control law for the system of 
Eq. (2), has been suggested as follows [18]: 

0
ˆˆˆ uKGCM D +−++= σςςτ &&&  (43)  

where M̂ , Ĉ , Ĝ  have the same forms as M , C and G , 
respectively, but with estimated parameters, KD is a 
constant positive definite matrix, and 

00
~xx d Λς −= &&  (44)  

 

000
~~ xxx Λςσ +=−= &&&  (45)  

where Λ is a constant positive definite matrix, dx0  is the 

desired trajectory and dxxx 000
~ −=  is the vector of 

position tracking error. 
Equations (39) and (43) give: 

0
~ˆˆ uwKCM D +=++ σσσ&  (46)  

where 
)ˆ()ˆ()ˆ(~~ GGCCMMYw −+−+−== ςςρ &&&  (47)  

and  
ρρρ −= ˆ~  (48)  

in which ρ̂  and ρ  are the vectors of estimated and exact 
base dynamic parameters of the system, respectively. It 
has been shown that the Lyapunov 
function, σσ MV T

2
1= , has negative semi-definite time 

derivative if u0 is chosen as [18]: 
σεη )( 2

0 −=u  (49)  

Also, u0  can be considered as [16]: 
σσηεη ))(( 2

0 +−=u  (50)  

when ε is a vector of real positive valued functions and 
η≤w~  (51)  

where, from the properties of section 3.D, η can be written 
as [18]: 

2
0302010

~~~ xxx && ααααη +++=  (52)  

or [16]: 

θδδδ

δδδη

See

ee
T =

=++=

]][1[. 210
2

2
210  

(53)  

where ]~~[ oo xxe &= , and (when only revolute joints are 
used) the constant bounds αi’s and δi’s  depend on KD, Λ, 
desired trajectory, M̂ , Ĉ  and Ĝ and can be a priori 

calculated in a complicated and lengthy process [18]. 

A.2 Modification of the Robust Controller Design by 
Adaptation of the Parameters 

In order to include an adaptive mechanism in a system, 
first, there should be recognized some uncertain 
parameters to be estimated on-line. These parameters, in 
our case, could be either ρ̂ , estimated base dynamic 

parameters of the system, or θ̂ , the vector of estimation of 
the constant bounds of θ. To estimate a fewer number of 
unknowns, one may choose the vector of uncertain 
bounds, θ̂ . But, a difficulty arises when choosing θ̂  and 

not ρ̂ . This difficulty takes place since the terms ρ̂  are 
not estimated anymore and, therefore, cannot be used in 
equation (43). To deal with this problem and to make the 
controller (torque) commands simpler, one may modify 
the controller law of equation (43) as: 

0uK D +−= στ  (54).  
Equations (39) and (54) give: 

00

0

. uwuY

uGCMKCM D

+′=+−

=+−−−=++

ρ

ςςσσσ &&&&
 

(55).  

where w', like w~ , is bounded because of the system 
properties of section 3.D as:  

η≤′w  (56).  

Note that, because of the properties of the system 
dynamics, the current forms of equations (52) or (53) do 
not need to be changed, although the constant bounds do 
not have their previous values. These bounds can be 
updated by the following well-known adaptation 
mechanism [16]: 

σγθθ TS−== && ~ˆ  (57)  

where γ is a positive definite matrix, θθθ −= ˆ~ , andη̂  
and ηηη −= ˆ~  can be defined as: 

θηθη
~~,ˆˆ SS ==  (58).  

B.  The Stability Analysis 
The following Lyapunov function can be used for the 

stability analysis of the system: 
εθγθσσ ε

11 ~~
2

1
2

1 −− ++= KMV TT  (59)  

where Kε is a positive definite matrix. 
Tacking time derivative of equation (64) leads to: 

εθγθσσσσ ε &
&

&&& 11 ~~21 −− +++= kMMV i
TTT  (60).  

Substituting the control law (54) in dynamic matrix 
equation of the robotic system leads to: 

0uwKCM D −+−−= σσσ&  .(61)  

By substituting equations (57) and (61) into equation 
(60), the following equation is obtained: 
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σσε

σσθσσ

ε )2(21.

)'(~

1 CMk

uwSKV
T

o
T

D
T

−+

+−+−−=

− &&

&
 

(62)  

where the last term in equation (62) is equal to zero 

because of skew symmetry property of CM 2−& . By 
considering equations (53) and (56), we can show that: 

εσσθσθσσ ε && 1~ −+−+−−≤ kuSSKV o
T

D
T  (63).  

By assuming εε εK−=& , to make sure ε will have a 
stable and convergent behavior, and substituting 
equations (50) and (58) into equation (63), this equation is 
rewritten as: 

εσθ
θσσσθεσσ
+

−+−−≤ ˆ
)ˆ(ˆ

2

S
SSKV

T

D
T&  

(64)  

or, 

εσθ

θσ
σθεσσ

+
−+−−≤ ˆ

)ˆ(ˆ
22

S

S
SKV D

T&  
(65).  

By simplifying the above equation, we will have: 

εσθ

σθε
εσσ

+
+−−≤ ˆ

ˆ

S

S
KV D

T&  
(66).  

As the summation of the last two terms in equation (66) is 
less than zero the following inequality is obtained: 

σσ D
T KV −<&  (67)  

Therefore, one may write: 

( ) 2
min σλ DKV −≤&  (68)  

where λ is the smallest eigenvalue of matrix DK . This 
implies that: 

∫≥∞−
∞

0
min )()()0( dttVV σλ  

.(69)  

Since V&  is negative semi-definite, it can be stated that 
V is a non-increasing function and, therefore, it is upper 
bounded by V(0), then:  

∫ ∞<
∞

0
min )( σσλ dr    or  ∞<∫

∞

0

2)( dttσ  
(70)  

which shows nL2∈σ . To establish a stability result for the 
position tracking error, 0

~x , one, by using Eq. (45), may 
write the transfer function relationship between the 
tracking error and the filtered tracking error, σ, as: 

( ) )(.)().()(~ 1
0 ssIssGsx σΛσ −+==  (71)  

where s is the Laplace variable. Since G(s) is a strictly 
proper, asymptotically stable transfer function and 

∞∈ 2Lσ , one may conclude that, [16-18]: 
0x     0t

=
∞→

~lim  (72).  

Therefore, the position tracking error, 0
~x , and also the 

velocity tracking error, 0
~x& , converge asymptotically to 

zero.  

As it is seen for this control scheme, equations (45), 
(53) and (54), there is only need to measure positions and 
velocities and we don’t need to measure the force and 
torque reactions and also the joints and object 
accelerations. This makes the controller a simple and 
efficient one. 

 

5.  SIMULATION 

Since we have two similar robot manipulators in our 
lab each with 5 DOF, see figures 2 and 3, the simulation 
is performed on the system consisting of a rigid object 
grasped firmly by these two robots. Kinematic and 
dynamic parameters of the RRRRR robot manipulators 
are given in Tables (1), (2), respectively. The object is a 
rigid plate with the following specifications: 

)(25.0),(1.0),(16.0 kgmmwml ppp === , where pp wl ,  

and pm are length, width and mass of the plate, 

respectively. 
The vectors for positions/orientations of the end 

effectors relative to the center of mass of the rigid object 
in the inertial frame are: 

[ ]Tr 0008.01
0 −= , [ ]Tr 0008.02

0 =  

[ ]T2/001
0 πθ −= , [ ]T2/002

0 πθ =  
The base frame of robot 2 is located at 

[ ]ToriginP 005.02 = meters apart from the base frame 

of robot 1 (the inertial frame). Then, the rotation matrices 
of robots 1 and 2 with respect to the inertial frame are:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
== ×

100
010
001

, 21 33 b
w

b
w RIR .  

A similar input disturbance equal to 0.1sin(πt/T)τ has 
been added to the elements ofτ  (where T is the total time 
and τ  is the vector of input torques). 

The desired path is designed from the initial 
position/orientation of the rigid object center of mass,  

T
oinitialX ]0015.02.0012.0[=  

to its final position/orientation, 
T

o finalX ]01.03.01.0015.0[= . 

Because the Jacobian matrices are not square for 5 
DOF robots, the dynamic equations of motion for two 5 
DOF arms are more complicated than those of two 6 DOF 
robotic arms. Also, because of the grasp constraints, the 
object can move on 4 DOF trajectories. To have a 4 DOF 
trajectory, as an example, the motion in y direction and 
the rotation about z axis are limited and both variables 
remain constant, and therefore, they will not be shown in 
the figures.   

In order to compare the adaptive-robust control scheme 
with another controller, an adaptive control design, [16-
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18], which is, in many aspects, comparable to the 
adaptive-robust controller is chosen. Figs. 4 to 11 
illustrate the Cartesian position in X and Z coordinates and 
the orientation in terms of RPY angles, Φ and θ, about X 
and Y axes, for the rigid plate when an adaptive and an 
adaptive-robust control scheme are applied to the system 
and their corresponding desired values in the inertial 
frame. From these figures, it is obvious that the adaptive-
robust control scheme has robustness against 
disturbances. Also, it performs better and needs update of 
a fewer number of parameters, which makes it more 
efficient and faster, in compare to its adaptive counterpart. 

6.  CONCLUSION 

The kinematics and combined dynamics of a dual arm 
system consisting of two RRRRR robots and a rigid plate 
in operational space have been developed. Furthermore, 
an adaptive-robust control method was proposed for 
trajectory tracking of the rigid plate and consequently the 
robots. The proposed controller does not need to measure 
the force and torque reactions at contact points between 
end-effectors and rigid body and also there is neither body 
nor joint acceleration measuring requirement. 

In order to show the validity of the proposed control 
method, a numerical simulation was performed and its 
results are presented for trajectory tracking of the 
cooperating robotic system.  

The adaptive-robust control has the advantages of both 
adaptive and robust control schemes, among its merits are 
the simplicity of this controller and its robustness against 
disturbances. 

7.  TABLES AND FIGURES 

 
TABLE 1  

 DENAVIT- HARTENBERG KINEMATIC PARAMETERS OF THE ROBOTS 
Join

t 
θi 

[rad] di [mm] ai 
[mm] 

αi 
[rad] 

1 θ1 125 0 -π/2 
2 θ2 0 200 0 
3 θ3 0 200 0 
4 θ4 0 0 -π/2 
5 θ5 148 0 0 

 
TABLE 2 

 DYNAMIC PARAMETERS OF THE ROBOTS 
  Moments of inertia (kg.m²) 

Lin
k No. 

Mass 
(kg) Ixx Iyy Izz 

1 1.9 1.05 0.722 0.707 
2 1.6 0.27 4.4 4.349 
3 1.3 0.035 0.619 0.614 
4 0.6 0.0397 0.0417 0.008 
5 0.45 0.228 0.222 0.022 

 
 
 

 
 
Figure 1: Non-inertial coordinate frame O-xyz and inertial frame 
b-XYZ. 
 

 
Figure 2: A 5 DOF RRRRR robot manipulator. 
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Figure 3: A non-redundant cooperative robotic system. 

 

Figure 4: Tracking performance of an adaptive control scheme 
for position of the object’s center of mass along X axis vs. time.  

 
Figure 5: Tracking performance of an adaptive-robust control 
scheme for position of the object’s center of mass along X axis 
vs. time.  

 
Figure 6: Tracking performance of an adaptive scheme for 
position of the object’s center of mass along Z axis vs. time. 

 
Figure 7: Tracking performance of an adaptive-robust scheme 
for position of the object’s center of mass along Z axis vs. time. 

 
Figure 8: Tracking performance of an adaptive scheme for 
orientation of the object about X axis vs. time. 
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Figure 9: Tracking performance of an adaptive-robust scheme 
for orientation of the object about X axis vs. time. 
 

 
Figure 10: Tracking performance of an adaptive scheme for 
orientation of the object about Y axis vs. time. 
 

 
Figure 11: Tracking performance of an adaptive-robust scheme 
for orientation of the object about Y axis vs. time. 
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