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ABSTRACT 

In this paper, a new approach for optimizing disparity candidates space is proposed for the solution of 
dense stereo matching problem. The main objectives of this approach are the reduction of average number of 
disparity candidates per pixel with low computational cost and high assurance of retaining the correct 
answer. These can be realized due to the effective use of multiple radial windows, intensity information, and 
some usual and new constraints, in a reasonable manner. The new space improved by the new idea validation 
and correction retains those candidates, which satisfy more constraints and especially being more promising 
to satisfy the implied assumption in using support windows, i.e. the disparity consistency of the window 
pixels. To evaluate the proposed space, the weighted window is used to estimate dense disparity map in this 
space. The experimental results on the standard stereo images indicate an overall speedup factor of 11 and 
the improved disparity map.   
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1.  INTRODUCTION 

Stereo vision or recognition of 3D structure from 2D 
images of a scene is one of the fundamental problems in 
machine vision. Modern applications such as 3D 
graphics, 3D displays and image based modeling have 
made it an active research area within the last few years. 
The main problem in stereo vision is finding 
corresponding pixels from two images or stereo 
matching. In feature-based stereo, the matching of feature 
elements such as edges or corners is considered and 
sparse disparity map is produced; while in area-based 
stereo, considered in this paper, the corresponding search 
process is first accomplished for all pixels of the images 
and dense disparity map is then produced. 

The area-based algorithms could be also categorized 
into global and local ones. In global matching 
algorithms[1]-[7] an accumulative cost function is 
defined on the basis of matching constraints such as 
intensity consistency and disparity continuity on image 
line or surface. Then, by minimization of the cost 
function using iterative optimization[1]-[3] or dynamic 

programming algorithms [4]-[7], considering constraints 
for occlusion, ordering, uniqueness and ..., disparity in 
each pixel is finalized. In the local algorithms [8]-[13] 
pixel to pixel matching cost is computed using a 
determined function such as absolute of intensity 
difference and for decreasing ambiguity in matching 
process, matching cost for each disparity candidate is 
obtained by aggregating pixel to pixel matching costs in a 
supporting window area around the proposed pixel by the 
implied assumption of disparity consistency in the 
window area.  In these algorithms, generally, using 
simple WTA (Winner Takes All) rule, disparity candidate 
with minimum matching cost is selected as the disparity 
of the proposed pixel.  

Global methods lead to better results with respect to 
local methods; however, in these methods the algorithm 
of global cost function optimization is computationally 
expensive, and in some cases their performance is 
dependent on the quality of initial estimation of disparity 
values as well as accurate segmentation of images. Local 
matching algorithms have less computational complexity 
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with respect to global methods; however, in these 
methods for the reason of the simplicity of selection 
process, determination of accurate matching cost is of 
great importance, to obtain smooth disparity map with 
sufficient details. Therefore, for improving results, rank 
cost functions [8] and adaptive window [9] [11], multiple 
window [11] and weighted window [12] [13] ideas have 
been proposed in the literature. In these methods, through 
massive and in some cases iterative computations for 
determination of size and shape of the window or weight 
of the pixels inside the window the matching cost is 
computed. In other words, all techniques mentioned 
above with different ideas are trying to fulfill the implied 
assumption in using the window, i.e. the disparity 
consistency of the window pixels, abbreviated as DCWP , 
in different regions of the image. However, in local 
matching algorithms finding an ideal matching cost with 
high discriminating power reflecting all necessary 
constraints of matching process and selecting the true 
match among a large number of candidates with arbitrary 
statistical information, regardless of its computational 
complexity, seem unreachable. 

In this paper, a new approach for optimizing disparity 
candidates space in solving dense stereo matching 
problem is proposed and a new space named reduced 
disparity candidates abbreviated as RDC is obtained.  It 
seems that in the new space by selecting candidates 
which satisfy more constraints, especially being more 
promising to satisfy DCWP  constraint, and therefore the 
true disparity more probably can improve accuracy and 
computational performance as well. Using high assurance 
matched pixels [4] [7] and generalized directive pixels 
[5] to conduct matching process in global algorithms as 
well as increase accuracy and decrease computational 
cost supports the proposed idea. In the new space, the 
behavior of stereo matching in different regions of image 
can be observed and classified. In this paper, a new 
approach to improve the proposed space is presented and 
weighted window is used for dense disparity map 
estimation in this space. In section 45 of the paper, the 
proposed algorithm to organize RDC space is introduced. 
In section 3, the behavior of RDC space in different 
regions of image is considered. In section 4, an approach 
named validation and correction is proposed for 
improving the RDC space. Total validation of the 
proposed space and the results of dense disparity map 
estimation, using weighted window in this space, are 
presented in section 5. The concluding remarks are given 
in section  6.   
2.  REDUCED SPACE OF DISPARITY CANDIDATES 

In dense stereo matching, the initial set of disparity 
candidates for each pixel is determined by usual epipolar, 
minimum and maximum disparity constraints. In 
binocular stereo with two rectified images, according to 
the epipolar constraint, if 

mind  is the minimum disparity 

and maxd  is the maximum disparity of the matched pixels, 
the matching candidates of pixel p from the line l of the 
left image in location i , will be the pixels from the line 
l of the right image in locations 

maxi d− to 
mini d− .  

Therefore, if the left border of the image is not 
considered, disparity candidates set of pixel p  in pixel 
scale is { },int min max,...,pcand d d=  and the number of 

disparity candidates for each pixel and also the average 
number of disparity candidates per pixel, abbreviated as 
ANCP  and used for performance evaluation in this 
paper, are equal to: 

)1(  max min 1ANCP d d= − +                                       

In this paper, organizing RDC space, using search 
space reduction algorithm, with the three main objectives 
is proposed: 1) to reduce the number of candidates per 
pixel as much as possible by eliminating noisy and 
unreliable candidates, 2) to retain those candidates 
promising to fulfill necessary matching constraints and 
conditions, specially DCWP , and so are the correct 
answer more probably, and 3) to maintain a 
computationally low cost procedure. For evaluating RDC 
space for the first objective ANCP  criterion and for the 
second objective PPWTDC criterion, which presents 
percent of pixels without true disparity candidate, are 
used. Performance of different algorithms for dense 
disparity map estimation is usually evaluated by error 
threshold of one pixel, hence, in this paper, for 
computing PPWTDC this threshold is used for counting 
pixels without true disparity candidate.  Dense disparity 
map estimation using local or global stereo matching 
algorithms in RDC space, for the reason of simpler and 
more reliable search space, is possible by noticeable 
reduction of computational cost and higher precision.  

A.  Search space reduction algorithm 
Radial window definition: Eight radial windows with 
45o  of angle differences illustrated in Figure 1 and 
numbering presented in this figure are proposed. For each 
window and in each direction, a ray of pixels with the 
length of n  two supporting rays in its left and right sides 
are considered. Lα  denotes a vector with the length of n , 
including the intensity value of the center pixel and 1n −  
pixels in its continuance in the left image for a ray in 
directionα .  1,L α  and 2,L α  denote intensity vectors with 

the length of n for the two neighboring sides of the main 
ray for a ray in the direction of α  in the left image. For 
instance, in Figure 1 for 135α =  and 5n =  the pixels 
taking part in vector Lα  are  demonstrated in black color, 
while the pixels taking part in 

1,L α
and 2,L α vectors are 

shown in grey color. In the same way, for the matching 
candidate pixel in the right image, vectors Rα

, 
1,R α

and 
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2,R α
are defined. 

 
Figure 1:  proposed pattern of radial windows 

Matching cost function definition: The matching cost 
of the two pixels of lp  from the left image and rp  from 
the right one, in direction α , is defined as follows: 

cos ( , )l rt p pα =   

( ) ( )
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Matching cost matrix calculations: Having calculated 
the matching costs of pixels for any pair of horizontal 
corresponding lines of the two images, using the 
matching cost function (2), eight matching cost matrices 
each belonging to one of the directions shown in  Figure 
1, denoted by { }; 0,45,...,315COSTα α =  will be obtained. 

MinMin process: In each matrix COSTα
, each point 

being the minimum of both the row i and the column j, 
which means to be satisfying left-right consistency 
constraint, LRCC,  represent that pixel p in location i 
from the left image and pixel q in location j from the 
right one, in two corresponding horizontal lines, are the 
best matching candidates for each other. Therefore a 
reliable candidate, named ,pcand i jα = −  for pixel p 

from the left image related to a ray in direction α  is 
determined. The pixels that are not assigned a candidate 
in this process should mainly belong to homogenous and 
occluded regions; thus, being reasonable to avoid 
assigning them a candidate based on the matching cost. 
AddLeft process: To determine the disparity candidate, 

,pcand α , those pixels remained unmatched through 

MinMin process, while they are supposed to be on the 
occluded or homogenous regions, on the basis of 
disparity continuity constraint, are assigned the exact 

,pcand α′ of the pixel p′  on the left side. Note that the 

pixels remained unmatched on the left side border of the 
image, are the exceptions of this rule and are assigned the 
exact ,pcand α′  of the pixel p′  on the right.  

Aggregation process: In this process, for each pixel p, 
the outputs of MinMin and AddLeft processes on the 
eight related matching cost matrices, namely 

{ }, ; 0,45,...,135pcand α α =  are collected and named 

pcand . Although 
pcand  is a set of eight candidates for 

each pixel p of the left image, each one corresponds to 
one direction, note that the disparity values of these eight 
candidates, are not necessarily distinct and some 
candidates can be the same.  ANCP is evaluated in terms 
of the number of distinct candidates and so after SSR 
algorithm its maximum value will be 8. 
Comments: Two important points about using radial 
windows in this paper and its difference with respect to 
other common methods should be emphasized: 
• The notion of multiple windows is used here 

differently from the way it is used in usual multiple-
window approaches. In common multiple window 
methods [7][11] comparing matching cost of 
different windows which mask different regions of 
image with different statistical features is not 
justifiable. In the multiple window method of this 
paper, such comparing is not used and matching cost 
matrices of different windows are processed 
separately. 

• Because of using eight slim radial windows in 
different directions, the probability of a continuum in 
which the overlapping with depth change does not 
occur and so DCWP  constraint is satisfied, will be 
highly increased. 

The first part of the cost function is the sum of 
absolute differences of intensity value of the radial 
window pixels of the left and right images, with the ratios 
indicated for main and neighboring rays. Thus, in the 
computation of matching cost, the intensity information 
of a larger area take part, which in turn cause the 
reduction of noise effect, especially in homogenous or 
repetitive textured regions. Second part of the cost 
function is the sum of absolute gradient differences of the 
intensity value of pixels of the neighboring rays in the 
left and right images. The less the intensity gradient 
difference of the radial windows of the left and right 
images, the less the matching cost will be. If there is a 
great gradient difference, and especially if the gradient 
direction in the specified regions of the two images is 
different, the matching cost will be increased. The 
matching cost function (2), while having low 
computational complexity, uses the intensity information 
in an effective manner. 

B.  RDC  space representation 
To represent RDC space, a one-byte number N 

between 0 and 255 is assigned to each point (p,d) of this 
space, which corresponds to pixel p of reference image 
with disparity candidate d. Based on number and position 
of 1s in bit string of N, number of repetition of disparity d 
in pcand  and rays, which lead to disparity d by SSR 

algorithm, are determined. For instance, if N =240 is 
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assumed for point (p,d), its corresponding bit string, 
11110000, shows that for pixel p four rays numbered 5, 
6, 7 and 8 lead to disparity candidate d. On the other 
hand, disparity candidate d for pixel p is repeated 4 times.  

In Figure 2-a, left image of stereo image “Venus” is 
depicted. To organize RDC space for this image, SSR 
algorithm with eight radial windows with length n=15 
has been implemented. RDC space in determined regions 
in Figure 2-a for a part of a horizontal row of image has 
been shown with diagrams of Figure 2-b to Figure 2-f. In 
each diagram, columns represent the position of pixel p 
in proposed row of image and rows represent possible 
disparity values for proposed image based on minimum-
maximum disparity constraint. To simplify 
representation, in intersection of column i and  row d  of 
each diagram, only repetition number of 1s in number N 
or repetition number of disparity d in pcand  is shown 

and if a cell is empty, it represents that pixel p of the 
proposed row in position i in RDC space does not have 
disparity candidate d. It is obvious that without applying 
SSR algorithm all the cells in diagrams of Figure 2 have 
the value 1. Continuous line in diagrams of Figure 2 is 
obtained from true disparity map and shows true disparity 
values in proposed pixels of the image. 

 

 
Figure 2:  Venus image and RDC  space in different regions 

3.  RDC  SPACE DESCRIPTION IN DIFFERENT REGIONS 
OF IMAGE 

In RDC space, most problems and complexities of 
stereo matching in different regions of image can be 
described from a different view considered in this 
section.  

Regions with sufficient texture and without depth 
discontinuity: Region 1 in Figure 2-a is a sample of this 
type that RDC space for a part of a row of this region is 
presented in Figure 2-b. As observed in this region 
because of satisfying DCWP constraint and also 
existence of sufficient intensity information in radial 
windows, ANCP  is equal to 1, disparity candidate in 
each pixel is equal to true value and PPWTDC is zero.  

Regions with low texture and without depth 
discontinuity: In Figure 2-c RDC space for a part of a 
row of the image in region 2 is observed. Although in 
this region DCWP  constraint is satisfied, because of low 
intensity information in rays, sparse disparity candidates 
have been produced. Representation of candidates 
correspond to all rays for an assumed pixel of this region 
in Figure 3-a shows the sparseness of disparity values for 
different directions. ANCP value in this region has been 
increased with respect to previous case and is equal to 5. 
However, for the reason of proper operation of matching 
cost function (2), value of PPWTDC is zero and in most 
of the pixels true value is obtained for more than three 
rays.  

Regions near to horizontal edge with depth 
discontinuity: In Figure 2-d RDC space for a part of a 
row of image in region 3 is observed. Pixels of this 
region generally have two distinct disparity candidates of 
two far and near surfaces. On the other hand, in this 
region ANCP is approximately 2. For more precise 
observation of candidate distribution in this region, 
disparity values corresponding to all rays for an assumed 
pixel of this region, located on near surface, are shown in 
Figure 3-b. Major part of rays 2, 3 and 4 is expanded on 
far surface; so, for these rays DCWP  constraint is 
violated and by SSR algorithm false disparity candidate 
of far surface is obtained. For other rays which are 
completely expanded on near surface, DCWP  constraint 
is satisfied and obtained disparity candidates have true 
values.  

Regions near to vertical edge with depth 
discontinuity: Figure 2-e shows RDC space for a part of 
an image row in region 4 with a vertical edge with a 
depth discontinuity in its continuance. In this case, as 
shown in Figure 3-b, for a typical pixel of this region on 
far surface,  in rays 1, 2 and 8 which are expanded on 
near surface, DCWP  constraint is not satisfied and so 
these rays lead to false disparity candidate equal to 
disparity of near surface. However, rays 3, 4, 5, 6 and 7 
which are completely on far surface, lead to true disparity 

(a) Left image of Venus (b) Region 1 

(c) Region 2 (d) Region 3

(e) Region 4 (f) Region 5 

 

 

1 3 2 
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of this surface. In such a region in left image, within 
depth change occurring from far surface to near surface, 
in some pixels of left side of depth discontinuity, a part or 
all of some rays occur in occlusion region. In such a case, 
either false disparity of near surface is assigned to these 
rays or by MinMin process in SSR algorithm no disparity 
candidate is obtained for these rays which in turn in 
AddLeft process are assigned usual true disparity 
candidate of left side pixel for the same ray. Also, in 
some cases, in these regions, MinMin process leads to 
false sparse disparity candidates. In region 4, in left side 
pixels of depth discontinuity for right side rays, also in 
right side pixels of depth discontinuity for left side rays, 
where a major part of the rays is expanded on far surface, 
disparity of this surface is expected. However, from 
Figure 2-e it is concluded that for these rays which 
overlap the near surface even for one pixel, disparity of 
this surface is obtained. This phenomenon is for the 
reason that the right side pixels of depth discontinuity on 
near surface have bigger intensity values and so in the 
cost function (2) have dominant and efficient role. This 
phenomenon in RDC space is equivalent to the effect of 
disparity propagation of near surface on far surface i.e. 
foreground fattening in common window methods [8]-
[13].  
 
 
 
 
 
 
 

Figure 3:  Disparity of different rays 

Slanted regions: In Figure 2-f RDC space for a part 
of an image row in slanted region 5 has been presented. 
In slanted regions, DCWP  constraint is violated 
alongside the slant gradually and continuously; so, 
typically in pixels of these regions in RDC space two or 
more disparity candidates with adjacent values are 
obtained. This subject reveals the complexity of matching 
and the necessity of using sub-pixel estimation in these 
regions to extract precise disparity value [14]. 

 

 
(a) Reg. 2 with simpler cost 

function 

 
(b) Reg. 2 with n=3 

 
(c) Reg. 3 with n=3 

 
(d) Reg. 4 with n=3 

Figure 4:  Effect of different parameters in RDC space 

Important parameters to organize RDC  space: 
Important parameters are matching cost function and 
radial window size. For instance, if the support of lateral 
rays for radial windows is ignored, discrimination power 
of matching cost function (2) is noticeably decreased. In 
this case, in RDC space for region 2 as shown in Figure 
4-a, ANCP value has been increased to 6.5. To observe 
the effect of window size in RDC space, this space for 
some regions determined in Figure 2-a is represented in 
Figure 4 with n=3. Figure 4-b reveals that, in smooth and 
un-textured region 2 by decreasing the size of window, 
ANCP value is increased from 5 to 5.9 and 
PPWTDC value is increased from 0 to %30. In Figure 4-c 
for region 3 adjacent to a horizontal depth change, 
because of decreasing length of rays, DCWP  constraint 
is satisfied for rays and therefore disparity candidates 
aggregate near the true value. In Figure 4-d for region 4 
with a vertical depth discontinuity, decreasing length of 
rays causes DCWP  constraint to be reserved to nearer 
distances of depth change edges and so the range, in 
which disparity candidates have two distinct values of far 
and near surfaces, has been decreased. Instead, increasing 
occlusion effect in this region causes sparse candidates 
near depth discontinuities. Equivalently in common 
window methods, with decreasing window size, disparity 
values will be improved to nearer distances of borders or 
foreground fattening is decreased; however, in smooth 
regions more false matches is obtained. 

4.  RDC  SPACE IMPROVEMENT BY VALIDATION 
CORRECTION ALGORITHM 

In this section, the new proposed algorithm named 
validation-correction, or “ValCor” is proposed for more 
processing candidates obtained for each pixel in RDC 
space and organizing IRDC  space. The aim of ValCor 
process is to reduce ANCP , by eliminating non-valid 
noisy candidates, and also to decrease PPWTDC , by 
inserting new valid non-present ones and briefly to 
improve RDC space.  

The ValCor process is done on the basis of DCWP  
constraint, meaning that the cost aggregation in the 
support window area for a pixel may be valid if most of 
the pixels within the window have the same disparity as 

 (4) (4) 

(9) 

(9) (9) (9) 

(10)

(4) 

 

 (8) (13)

(13)

(13)(8) (8) 

(8) 

(8) 
 (16) (7) 

(3) 

(7) (10) (17) 

(7) 

(18) 

 
(b) Pixel 85 of Reg.3 (a) Pixel 330 of Reg.2 (c) Pixel 280 of Reg.4 
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the disparity of the proposed pixel. Thus, the validity of a 
disparity candidate related to a ray is considered as the 
percent of pixels within the ray having a candidate with 
the same disparity value. In case a disparity candidate is 
supported by several rays, its validity is considered as the 
maximum validity computed for all rays. If the calculated 
validity for a candidate is less than a threshold value, this 
candidate will be eliminated from the list of candidates 
for the nominated pixel. This stage of the ValCor process 
is known as “validation”.  

Because the necessary computations to determine the 
disparity are performed in the pixel scale, while the 
disparity amounts especially on slanted surfaces can be 
on a sub-pixel scale, the validity of 1pd +  and 1pd −  for 

the rays having pd  candidate, is also calculated. 

Providing that these new disparity values have sufficient 
validity, they will be added to the list of disparity 
candidates for the nominated pixel. This part of the 
algorithm is known as the “correction”. Considering 

,p vc pcand cand=  for each pixel p in the beginning of 

ValCor process, the steps of this process to organize 
IRDC  space are as follows: 

The computation of validity for each disparity 
candidate: The validity of disparity candidate shown by 

( )pv d , is computed as: 

(3)  
1( ) ( , )p p pS p RR

v d MAX B cand d
N

α
α∈

∈

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑  

In (3), S is the set of directions which support 
disparity candidate pd . Rα is the region from the left 

image occurring in the radial window located in pixel p 
and direction α . 

RN is the total number of pixels present 

in this region, and pcand  is the set of disparity 

candidates for pixel p  of this region. Function B is 
defined as: 
 

(4)  
1 ,

( , )
0

p p p p
p p otherwise

d cand d d
B cand d

∃ ∈ =⎧
= ⎨

⎩
 

The elimination of disparity candidate with low 
validity: The disparity candidate pd for pixel p will be 
eliminated from disparity candidates list of pixel p if its 
validity is less than a threshold value of T. That is to say: 

(5)  ,( )p p p vcv d T d cand< ⇒ ∉  

Correction: The validity of disparity candidates of 
1pd +  and 1pd −  for rays to which pd is respected, can 

be computed from (3). If the amount of validity of each 
of them is greater than the threshold T, then the same 

amount will be added to ,p vccand , i.e. the set of disparity 
candidates of pixel p. In other words: 

(6)  ,( 1) ( 1)p p p vcv d T d cand± > ⇒ ± ∈  

ValCor process effect: The result of applying ValCor 
process on RDC space in Venus image, with threshold 
value T=0.75, for some regions of Figure 2-a is shown in 
Figure 5. IRDC  space in Figure 5-a and comparing it 
with Figure 2-c reveal that in un-textured region 2 
ANCP value is decreased from 5 to 1.7 because of 
eliminating sparse candidates in validation stage, while 
true candidates  have enjoyed the support of adjacent 
pixels based on disparity continuity constraint and so 
have been reserved. In the regions adjacent to depth 
discontinuity, disparity candidates with the disparity 
value of one of surfaces neighboring depth discontinuity 
will be reserved and other sparse candidates will be 
eliminated. This subject is confirmed by observing 
IRDC  space in Figure 5-b for region 3 adjacent to a 
horizontal depth discontinuity and comparing it with 
Figure 2-d. IRDC  space for Figure 2-e has remained 
unchanged; however, considering IRDC  space in Figure 
5-c for region 4, using radial windows with length 3, and 
comparing it with Figure 4-d reveals that sparse 
candidates in occlusion region have been eliminated. In 
Figure 5-d IRDC  space is presented for slanted region 5. 
Comparing it with Figure 2-f reveal that in this case 
correction stage of ValCor process leads to adding 
disparity candidates in some pixels. In simple case, if 
disparity value of each pixel in this region is assumed 
average value of all disparity values for that pixel, it will 
be considered that, using ValCor process, the results of 
disparity estimation will be closer to the real values. 

 

 
Figure 5:  RDC space after applying ValCor process 
 

(c)  Region 4 with n=3 

(a) Region 2 (b) Region 4 

(d) Region 5 
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5.  EXPERIMENTAL RESULTS 

In section 2, three major objectives were enumerated 
in configuring reduced space of disparity candidates. In 
this section, the proposed objectives in IRDC  space, also 
the main purpose which is the improvement of dense 
disparity map are evaluated for standard stereo images 
“Tsukuba”, “Sawtooth”, “Venus” and “Map”, generally 
used to compare different algorithms [15]. In Figure 6-a, 
left images and in Figure 6-b, ground truth disparity maps 
of these stereo images are presented. IRDC  space is 
organized with eight radial windows of length n=15 and 
threshold value of T=0.75 in ValCor algorithm.  

A.  Evaluation of Search Space Reduction Stage 
In this section the first objective in IRDC  space, i.e. 

disparity candidate reduction ratio, is evaluated. For this 
purpose, the average number of distinct disparity 
candidates for each pixel,  ANCP , before organizing 
IRDC  space, as computed from (1), for each image is 
presented in the first row of Table 1. The value of 

 ANCP , in IRDC  space, is presented in the second row 
of Table 1. The last row of the table shows the reduction 
ratio of  ANCP for each image. Significant reduction 
ratio from 8.2 to 16.2 with the average of 11 on the 
standard benchmarks represents remarkable achievement 
on the first objective in IRDC  space. In reduction of 

 ANCP , SSR and ValCor algorithms have different 
behavior. For instance, for “Venus” image after the SSR 
algorithm, the value of  ANCP reduces from 20 to 2.08 
and using ValCor process reduces to 1.91. Although, 
reduction of candidates due to the latter process 
compared to the preceding one is not noticeable, it should 
be noted that after ValCor process validated candidates 
are selected, while the process of correction, which in 
turn, may cause an increase in the number of candidates, 
is carried out. 

TABLE 1 
PERFORMANCE OF SERACH SPACE REDUCTION ALGORITHM 

Map Venus Sawtooth Tsukuba  

30 20 20 16 Initial  ANCP  

1.85 1.91 1.87 1.94  ANCP  in IRDC  space 

16.2 10.5 10.7 8.2 Reduction Ratio 

B.  Dense disparity map estimation in IRDC  space 
To estimate dense disparity map in IRDC  space, 

disparity of each pixel is selected using an efficient 
matching cost function. In this paper, weighted window, 
proposed in [13] leads to better results with respect to 
other methods, is used. In the weighted window method 
bigger weight is assigned to pixels of the window being 
more probable to have a disparity equal to that of the 
center pixel. The most important shortcoming of the 
weighted window method is its high computational cost 

for the reason of using large windows and calculating 
weights with complicated mathematical functions [6][13]. 
From section 5.A, it is concluded that in IRDC  space, 
complicated computations of weighted window for 
standard stereo images is reduced 11 times in average. 
Using parameters proposed in [13] for weighted window 
dense disparity map estimation in initial set of candidates 
and also in IRDC  space are presented in  

Table 2. Numbers in the table are error percent with 
threshold value of one pixel in non-occluded, un-textured 
and near depth discontinuity regions. In Map image, there 
is no un-textured region. To correct the disparity values 
in the pixels of occluded regions and border of image, 
LRCC process is used [16]. Obtained dense disparity 
maps using SSR for different test images are depicted in 
Figure 6-c. To compare, the first and the third rows of 
Table 3 show the percent of error without IRDC  space 
and in IRDC  space, for all image. To see the effect of 
ValCor process in IRDC  space, the second row of Table 
3 presents the results of algorithm in RDC space.  

The percent of pixels without true disparity candidate, 
PPWTDC , can determine the lower bound of final error 
of dense disparity map estimation in IRDC  space; 
however, considering experimental results reveals that 
the share of IRDC  space of total error is really negligible 
and is in average 10 percent, meaning quite acceptable 
fulfillment of the second objective in IRDC  space. On 
the other hand, applying weighted window in IRDC  
space, due to choosing the validated candidates which 
fulfill more constraints and eliminating the noisy ones, 
leads to more precise results. Comparing the results of 
the Table 2 in different regions of image confirms this 
reality and also comparing the results of the first and the 
third rows of Table 3 reveals that in IRDC  space the 
overall error of dense disparity map estimation error is 
reduced by the average percent of 25 on different images. 
The comparison of the first row of Table 3 with its 
second row shows that applying weighted window in 
RDC space in some cases; e.g. Tsukuba image, increase 
the error and so error reduction in IRDC  space revels 
that correction phase of ValCor process has a 
considerable effect on the compensation of PPWTDC . 

C.  Computational cost 
All calculations in the processes of SSR and ValCor 

algorithms to organize IRDC  space are based on simple 
mathematical operations including add, subtract, compare 
and shift operations on integer numbers with the 
capability of parallelism. For instance, considering the 
number of required operations and functions and their 
execution times in Visual C++6, on the Intel P4 2.66GHz 
PC, and without parallelism, the ratio of computational 
cost per pixel to organize IRDC  space, (CPirdc )  and 
weighted window (CPww)  is found to be CPirdc / 
CPww =25/10000. if CCww  
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and CPirdc -ww represent respectively the total 
computational cost of dense disparity map estimation in 
initial set of disparity candidates and IRDC  space the 
following equations hold: 

(7)  * *ww p ww rCC N CP D=  

(8)  * * * * /irdc ww p rdc r p ww r cCC N CP D N CP D R− = +  

(9)  / 25/10000 1/ 1/irdc ww ww c cCC CC R R− = + ≈  

6.  CONCLUSION 

In this paper by effective use of usual information and 
constraints in stereo vision, new space of RDC space to 
solve dense stereo matching problem was proposed. To 
organize new space, intensity information in multiple 
radial windows, left-right consistency constraint, 
disparity continuity constraint and new DCWP  constraint 
were employed. The main properties of this space were; 
significant reduction of search space and retaining the 
correct answer amongst remaining candidates, without 

complicated computational calculations. By organizing 
this reduced space observing stereo matching 
complications is provided from a different and simpler 
view. By proposing RDC space in this paper, three 
research paths in solving dense stereo matching problems 
are opened:  1) suggestion of ideas to improve the new 
space considering its basic objectives. 2)  Applying 
previous dense stereo matching algorithms in new space 
and considering their performance from the view points 
of accuracy and run time in this space. 3) Suggesting new 
algorithms in proposed space to estimate dense stereo 
map. In this paper, in the first path an algorithm to 
improve RDC space and to organize IRDC  space was 
presented and in the second path weighted window 
method was used for final decision making about 
disparity of each pixel in IRDC  space. Experimental 
results indicate an overall speedup factor of 11 and % 25 
error reductions in dense disparity map estimation with 
respect to the case without using the proposed space.  

 
TABLE 2  

PERFORMANCE OF DENSE STERO MATCHING BASED ON WEIGHTED WINDOW AND WTA IN IRDC  SPACE 

 
 

Figure 6:  (a) Left image, (b) True disparity map, (c) Results in IRDC  space 
 
 
 

Map Venus Sawtooth Tsukuba 

disc nonocc disc untex nonocc disc untex nonocc disc untex nonocc 
 

11.46 1.62 7.65 3.39 2.63 5.32 0.29 1.32 7.92 2.95 3.21 In initial 
space 

7.70 0.66 6.88 0.94 1.04 5.04 0.23 1.12 8.57 2.76 2.49 
In IRDC  
space 

 

(a) 

(b) 

(c) 
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   TABLE 3 
WEIGHTED WINDOW AND LRCC PERFORMANCE IN 

DIFFERENT STATES 
Map Venus Sawtooth Tsukuba  

1.67 1.61 1.80 3.25 In initial space 

1.12 1.01 1.62 3.60 In RDC  space 

1.06 0.80 1.60 2.92 In IRDC  space 
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