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ABSTRACT 

In the present paper, the Zelt algorithm has been extended for ray tracing through an anisotropic model. In 
anisotropic media, the direction of the propagated energy generally differs from that of the plane-wave 
propagation. This makes velocity values to be varied in different directions. Therefore, velocity modeling in 
such media is completely different from that in an isotropic media. 

The velocity model for ray tracing is parameterized in terms of blocky trapezoid cells where the velocity 
changes inside the cells linearly. Thomsen’s approximations in weakly anisotropic media were used to 
estimate anisotropic velocity vectors. Rays were traced in direction of group vector in the vertical 
transversely isotropic (VTI) media, whereas, the anisotropic Snell’s law must be satisfied by the phase angle 
and phase velocities across the interface.  

The synthetic examples are given to demonstrate and verify the ray tracing algorithm. Reflected and 
turning waves were traced through the isotropic and anisotropic velocity models. Lateral and vertical 
velocity variation caused deviation on trajectory of the traveltime curve.  

The results show that the difference between isotropic and anisotropic traveltimes increases with offset, 
especially when the ratio offset/depth exceeds 1.5.  
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1.  INTRODUCTION 

In a homogenous anisotropic medium, the wave 
behavior is quite different from that in isotropic media 
(Helbig, 1994) and the velocity of a seismic wave changes 
with the direction of propagation. Parallel cracks, 
stratified layering, orientation of grains and rock foliation 
cause velocity anisotropy (Postma, 1955; Krey and 
Helbig, 1956; Levin, 1978; Berryman, 1979; Helbig, 
1981; Schoenberg, 1983; Thomsen, 1986).  

There are different ray tracing methods to model the 
velocity distribution. Shooting or bending algorithms are 
generally used to trace the ray path from a source point to 
a receiver (Julian and Gubbins, 1977). Cerveny (1985) 
applied paraxial extrapolation to estimate the traveltimes. 
Finite-difference methods were used by Reshef and 
Kosloff (1986), Vidale (1988), Podvin and Lecomte 
(1991), and Van Trier and Symes (1991) to estimate the 
first arrival traveltimes. Moser (1991) presented a graph 

theory to calculate the shortest ray path between source 
and receiver. Vinje et al. (1993) and Lomax (1994) 
simulated the wave fronts instead of ray paths.  

Zelt and Ellis (1988) presented a ray tracing algorithm 
in a 2-D isotropic velocity model. The model is divided 
by a series of trapezoidal blocks in each layer. The 
velocity within the trapezoidal cell is defined linearly. 
Zelt and Smith (1992) introduced a method of seismic 
traveltime inversion for determination of 2-D velocity 
model and interface structure. The ray tracing algorithm 
was a modification of that presented by Zelt and Ellis 
(1988). They defined velocity nodes for the corners of the 
trapezoid. Zelt (1999) applied seismic refraction/wide-
angle reflection traveltimes to obtain 2-D velocity model 
and interface structure.    

In this paper, we present a ray tracing method which 
enables to compute the traveltime through each ray in an 
isotropic and vertical transversely isotropic (VTI) media. 
We develop the Zelt and Ellis’s (1992) algorithm based 
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on ray tracing in an anisotropic model. Thomsen’s (1986) 
approximations for weakly anisotropic media were used 
to estimate the anisotropic velocity vectors. Slawinski et 
al.’s (2000) equations for horizontal anisotropic media 
were extended in a dipping anisotropic layering model to 
compute the ray direction. The main advantages of this 
method are simplicity and minimum number of 
parameters needs to define the model. This method is 
suitable for multi-shot recording to define optimal 
geometry of receivers in seismic operation planning.  

2.  VELOCITY MODEL 

In anisotropic media, the traveltime function is 
governed by an advanced form of the eikonal equation.  
Solution of this equation by the method of ray tracing is 
discussed by Cerveny et al. (1977). The kinematic ray 
tracing calculations were performed by solving the ray 
tracing system (Cerveny et al., 1977).  

In this study, the earth model was supposed to be 
homogenous and isotropic/anisotropic composed of a 
sequence of layers. Each layer is divided into trapezoidal 
cells (Fig.1). The interface of layers is specified by an 
arbitrary number of boundary nodes connected by linear 
interpolation. The number and position of the nodes may 
differ for each interface. The P-wave velocity within the 
trapezoidal cell is described as follows (Zelt and Smith, 
1992): 
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where, ic  is linear combination of the corner velocities 
( 1V , 2V , 3V and 4V ).  

In the case of P-wave propagation in VTI (vertically 
transverse isotropy) media, velocity determination 
requires the estimation of three parameters; 

0pV (P-wave 

velocity in the direction of the symmetry axis), ε 
(fractional difference between velocities perpendicular 
and parallel to bedding), and δ (the variation in P-wave 
velocity close to the symmetry axis). Under the 
assumption of weak anisotropy ( 1,1 <<<< δε ), the 
Thomsen (1986)’s approximation for P-wave phase 
velocity is:    
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where, ( )θpV  is the phase velocity in the phase angle θ 
measured from the vertical axis of symmetry. 

The Thomsen anisotropic parameters must be defined 
for each velocity nodes (Fig.1). 

 
Figure 1:  The corner parameters of the cell in an anisotropic 
model: εi and δi are Thomsen anisotropic parameters; Vi is the 
vertical velocity. 

3.  RAY TRACING 

In anisotropic media, the direction of the propagated 
energy (group vector) generally differs from that of the 
plane-wave (phase vector). Therefore, the ray angle Φ is 
different from the phase angle θ except at  0== θφ  and 

2
Π  

(Fig.2). 
 

 
Figure 2:  Relationship between velocity vectors in an 
anisotropic model. V (θ): phase velocity; V (Φ): group velocity; 
θ: phase angle; Φ: group angle. 
 

Shooting method is applied to trace rays through the 2-
D velocity model. Ray tracing is carried out by numerical 
solving of the two dimensional ray tracing equations by 
Cerveny et al., (1977): 
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where, θ is the angle between velocity vector and z-axis, 
V is the velocity of a cell (equation 1), and xV  and  zV  
are partial derivatives of velocity with respect to x and z 
direction.  

The rays are traced with P-wave group vector through 
the model, whereas the Snell’s law should be satisfied 
across the interface with phase angle and phase velocities: 
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The phase angle in each layer can be calculated by 
solving the equation 5 (Thomsen, 1986) using the 
Newton-Raphson algorithm. 
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where, iφ is the take-off angle. In this paper, the 
subscripts i and t refer to the medium of incidence and 
transmission, respectively.  

Once the phase angle, iθ , is found, the ray parameter, 
x0 , can be calculated as: 
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Equation (7) can be solved for the transmitted phase 
angle ( tθ ): 
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                                                                                       (7).                                                                                   
The transmitted group angle, tφ , which the group 

velocity vector makes with the normal to the interface, 
can be calculated based on the transmitted phase 
angle, tθ , from equation (8), (Slawinski et al., 2000): 

 

(8) 

( ) ( )

( )( )
( )[ ]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

−−
= −

22
02

2
0

1

cos22cos2sin.1

sin
cos22cos.2sincos

cos

ttttt
t

t

t
tttttt

t

t

t

V
r

r
V

ξεξδξ
ξ

ξ
ξ

ξεξδξξ
φ

 

where, tξ  is the phase latitude ( tt θξ −= 90 ), and  
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The traveltime at the endpoint of the ray is estimated 
by numerical integration along the ray path (Eq. 10). By 
linear interpolation across the endpoints of the two closest 
rays that surround the point of interest, the traveltime 
associated with a specific receiver location is determined.  
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where, t is traveltime, d is ray step length, and 
i

V is the 
ray velocity. 

4.  SYNTHETIC EXAMPLES  

Methodology examination accomplished by the 
computer program was written for ray tracing in 2-D 
isotropic and anisotropic media. To test the algorithm, a 
velocity model consisting of 7 layers was defined. The 
velocity model with isotropy/anisotropy parameters and 
velocity gradient was considered. This model contains a 

reverse fault which has interrupted the horizontal layers. 
The fault is terminated in 2nd layer and continued to the 5th 
layer. 

A.  A homogenous-isotropic model     
To start the ray tracing, we assumed a homogeneous 

isotropic condition for 2D velocity model.  In this model, 
the velocity in each layer was supposed to be constant. 
The 5th layer has the lower velocity than the upper layers. 
Therefore, the strong reflection surface is made at the top 
of this layer. Table 1 shows the velocity values for the 
model.  

 
TABLE 1 

PARAMETERS FOR THE  HOMOGENOUS-ISOTROPIC VELOCITY 
MODEL. 

 
layer 

0pV  (m/s) 

1 1800 
2 2500 
3 2000 
4 3500 
5 2700 
6 3500 
7 3000 

 
Rays were traced through the model by the new 

method. The ray paths and corresponding synthetic 
sections are plotted in Fig.3. The synthetic seismograms 
were produced by convolution of traveltimes with 60 Hz 
Ricker wavelet. The amplitude is the same for all traces. 
Figure 3a shows the reflected rays from the second layer 
(the shot is located on x=8 km).  

The shot location moved to x=12.5 km and the ray 
tracing carried out on the 5th layer (Fig. 3b). Because of 
the velocity contrast between 3rd and 4th layers, the critical 
angel occurs at 34 degree on this interface. Therefore, the 
long offsets were missed on the 5th layer during the ray 
tracing. 

Ray tracing through the 6th reflector has been shown in 
Fig.3c. The shot is located at x=12.5 km. Presence of the 
fault in this model was caused lateral velocity variation 
during the ray tracing on 6th layer. Velocity changes and 
dipping reflectors were caused the traveltime distortions 
on the reflection curve.  
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Figure 3: Reflected P-wave rays were traced trough the 
homogenous-isotropic media. Velocity model and reflected rays 
with related synthetic seismograms are shown for (a) second 
layer, (b) fourth layer, and (c) sixth layer. 
 

B.  A heterogeneous-isotropic model     
Vertical velocity gradient is considered for the 

previous velocity model. Ray bending occurs when the 
vertical velocity changes within a trapezoidal cell. Table 2 
shows the velocity gradients in each layer. 

 
TABLE 2 

PARAMETERS FOR THE  HETEROGENOUS-ISOTROPIC VELOCITY 
MODEL. 

 
layer 

0pV  (m/s) 

vertical gradient 
1 1800-2000 
2 2400-2750 
3 2900 
4 3450-3900 
5 3950-4200 
6 4500 

 
Due to vertical velocity gradient, turning waves were 

generated during ray tracing. Figure 4a shows the turning 
waves which travel in the curvature paths. The linear 
events in seismogram are related to the turning waves 
produced in the first layer (Fig. 4b). The unconformity 
located in the middle part of the section causes time 
distortions on the hyperbolic traveltime curve 
corresponded to the 3rd reflector. 

 

 
 
Figure 4:  (a) Reflected rays were traced on the bottom of the 3rd 
layer in the heterogeneous-isotropic media. (b) Linear events in 
seismogram are related to the turning waves generated in the 
first layer. The hyperbola is reflection curve of the 3rd layer. 
 
 
 

(a) 

(b) 

(b) 

(c) 

(a) 
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C.   A homogenous-anisotropic model     
The 2D-VTI model selected from Grechka and 

Tsvankin (2002) comprises the three homogenous layers. 
The parameters for the weak anisotropic model have been 
shown in Table 3, where ε and δ are Thomsen parameters 
for a VTI medium.

0pV is the vertical p-wave velocity. The 

velocities in each layer are assumed to be constant with 
different anisotropic parameters.  
 

TABLE 3 
PARAMETERS FOR THE WEAKLY ANISOTROPIC VELOCITY MODEL. 

 
layer 

0pV  (m/s) ε δ 

1 2000 0.2 0.1 
2 2500 0.25 0.05 
3 3000 0.15 0.1 

 
We traced the rays corresponding to the P-wave 

reflections from the source point located at 1850 m with 
different propagation angles to the bottom of the 3rd layer 
(Fig.5). 

 
 
Figure 5:  Reflected P-wave rays were traced trough the 
anisotropic media. The source point is located at x=1850 m.  

 
All the rays should satisfy the anisotropic Snell’s low. 

The critical angle for the reflected rays is checked in each 
interface by solving the equation (7). Imaginary answers 
for this equation mean that the ray is unable to penetrate 
to the lower layers and should be reflected. The 
boundaries should be smoothed before raytracing because 
the features with abrupt dip could make shadow zones. 

For testing the anisotropic effect, the ray tracing was 
performed through the model with isotropic assumption 
( 0== δε ). Fig.6a shows the comparison of ray paths 
under isotropy and anisotropy conditions. It seems that 
the difference between the two ray paths is related to the 
anisotropic parameters. The difference between 
traveltimes computed from the isotropic and anisotropic 
models increases with offset. Anisotropic parameters 
cause the significant effects on the long offsets especially 
when the ratio offset/depth exceeds 1.5 (Fig.6b). 
 

 
 
Figure 6: Comparison of isotropic and anisotropic ray tracing 
results (source point is located at x=1850 m). (a) Ray directions 
change in anisotropic layers, (b) the difference between 
traveltimes computed by the ray tracing through the isotropic 
and anisotropic models. 

5.  CONCLUSION 

A new method of ray tracing based on Zelt and Ellis’s 
(1992) algorithm for vertical transversely isotropic media 
has been developed. The new method of ray tracing has 
been examined in different velocity models 
(isotropic/anisotropic). The main advantages of this 
method are simplicity and a minimum number of 
parameters needs to define the model. This method is 
suitable for multi-shot recording to define optimal 
geometry of receivers in seismic operation planning.  

The synthetic data presented to test the method show 
that the difference between traveltimes computed from the 
isotropic and anisotropic model increases with offset. 
Anisotropic parameters cause significant effects on the 
long offsets especially when the ratio offset/depth exceeds 
1.5.  
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