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ABSTRACT 

This paper presents a multi agent system for the job shop scheduling problems. The proposed system 
consists of initial scheduling agent, search agents, and schedule management agent. In initial scheduling 
agent, a modified Shifting Bottleneck is proposed. That is, an effective heuristic approach and can generate a 
good solution in a low computational effort. In search agents, a hybrid search approach is presented. The 
schedule management agent can manage the system. Finally, the proposed agent based system is tested and 
validated by some benchmark problems. The results show the superiority of the proposed system in terms of 
makespan minimization and CPU times. 
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1.  INTRODUCTION 

The job shop scheduling problem with which we are 
concerned can be described as follows: The problem 
consists of scheduling the jobs on the machines with the 
objective to minimize the makespan. Any schedule is 
subjected to two constraints: (i) the precedence of the 
operations on each job must be respected; (ii) once a 
machine starts processing an operation it cannot be 
interrupted, and each machine can process at most one 
operation at a time. 

The job shop scheduling problems are among the 
hardest combinatorial optimization problems, and are 
strongly NP-complete  [16]. These problems have been 
widely studied in the literature by various methods: 
heuristics, shifting Bottleneck , constraint propagation 
techniques, tabu search, simulated annealing, genetic 
algorithms, neural networks, etc. 

Most of these methods encounter great difficulties 
when they are applied to real situations, because these 
scheduling methods use simplified theoretical models and 
are essentially centralized in the sense that all the 
computations are carried out in a central computing 
unit/center. These approaches are therefore inflexible, 
expensive and slow to satisfy real world scheduling 
problems. In particular, these approaches are not robust 
enough to accommodate the dynamic nature of the 

manufacturing scheduling problem.  
Within the past decade, a number of researchers have 

applied agent technology in attempts to resolve the 
scheduling problems  [27]. The studies undertaken in 
distributed scheduling may be classified into three 
categories: hierarchical, heterarchical, and centralized 
control  [29]. In a hierarchical approach like distributed 
asynchronous system DAS, the system is co-ordinated 
level by level and the corresponding parts are 
synchronized  [8]. In the heterarchical approach, the 
systems are co-ordinated by allowing the agents to 
negotiate amongst themselves. [2] Lastly, the agents can 
be co-ordinated by a single module utilizing centralized 
control. Talukdar and Murthy proposed the teams of 
autonomous agents (ATeams) to solve large 
combinatorial optimization problems using a multi agent 
based distributed problem solving method where the 
agents asynchronously build shared solutions  [28],  [23]. 
This method allows the system either to be centrally 
controlled or decentralized. In an ATeams, a collection of 
agents co-operates by sharing solutions through a 
common memory. The architecture is asynchronous and 
the agents are autonomous. Reference [28] reports success  
on a number of different problems. Aydin tested the 
ATeams on the job shop scheduling problem. He shows 
that the results of ATeams are better than individual 
agent but that it depends on the portfolio of agents and on 
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the way in which the memory is managed  [4].  
This paper present a new multi agent system based on 

Ateams by different framework for the job shop 
scheduling problems. The proposed system consists of 
initial scheduling agent, search agents and schedule 
management agent. Moreover, this paper presents a 
modified Shifting Bottleneck  in initial scheduling agent. 
That is an effective heuristic approach and generates a 
good solution in a low computational effort. Also, the 
paper presents a hybrid search approach in search agents. 
One of the contributions of this paper is presenting a 
modified Shifting Bottleneck  approach for job shop 
scheduling that is used in the proposed multi agent 
system. Subproblem solution procedure and 
reoptimization are two important factors in SB approach 
that can increase computational efforts. In large scale 
problems, we need effective procedures to decrease the 
computational efforts. This paper presents a modified 
Schrage algorithm for single machine scheduling 
problems with heads and tails that is an effective 
subproblem solution procedure. Then we present a 
heuristic approach for job shop scheduling that resolve 
reoptimization difficulties in SB. Finally, the proposed 
multi agent system is tested and validated by some 
benchmark problems. Experimental results show the 
superiority of our system.  

The rest of this paper is organized as follows: Section 
2 presents an overview of multi agent systems. In section 
3 the proposed multi agent system is presented. In 
Section 4, experimental results of the proposed system in 
comparison with another system are presented. Finally, 
conclusions and future works are presented in Section 5. 

2.  MULTI AGENT SYSTEMS 

In general, an agent is a computer system that is 
situated in some environment, and that is capable of 
flexible and autonomous action in this environment in 
order to meet its design objectives. By flexible we mean 
that the system must be responsive, proactive, and social 
 [33]. Various definitions have been proposed for the term 
multi-agent system (MAS). MAS are a loosely coupled 
network of problem solvers that work together to solve 
problems that are beyond the individual capabilities or 
knowledge of each problem solver. Ferber defines MAS 
as a system composed of a population of autonomous 
agents, which interact with each other to reach common 
objectives, while simultaneously each agent pursues 
individual objectives  [14]. Various interesting features of 
agents have been proposed and defined in the literature. 
However, some of them are more important and useful in 
agent-based manufacturing, e.g., autonomous, 
cooperative, proactive, and adaptive  [27].  

As shown in Figure1, the basic structure of an agent 
consists of the following three modules, namely, the 
manager module, message processor, and communication 

protocol  [36] : 

• Manager module: This is responsible for interacting 
with other agents, and executing the assigned tasks 
with a manager unit, a knowledge base, a method 
based consisting of the required operations, a 
database, and an agenda, which is a list of the 
scheduled tasks. 

• Message processor: This module stores and processes 
the messages received and the tasks assigned from the 
users or other agents. 

• Communication protocol: This guarantees the 
continuity and compatibility of communication 
between the agents using a unified communication 
language and protocol. 

 

 

 

 
 
 
 
 

 
 

An A-Team is a team of software agents that 
cooperate to solve a problem by dynamically evolving a 
shared population of solutions  [23],  [28]. Reference  [23]  
proposes architecture of autonomous agent operating 
asynchronously on a shared population of solution 
attempts, which they call “ATeams”. In the basic 
architecture, each agent is completely independent from 
the rest, and operates by selecting a solution from the 
memory, carrying out some operations on that solution, 
and then placing it back in the memory. Co-operation is 
thus archived by sharing solutions. The population of 
solution is controlled by a subset of destroyer agents, 
which evaluate solutions according to certain criteria and 
remove unwanted solutions. The organization of the 
agents is that loose-agents may appear and disappear 
from the team without penalty, may be widely distributed 
and do not communicate directly with other agents. An 
instance of ATeam architecture is shown in Figure2. 
Here, the system consists of a team of agents and a single 
memory, which has particular communications with each 
agent  [4]. 

ATeams are, in many respects, similar to blackboard 
system, in that a collection of processes co-operates to 
solve problems by posting the results of actions to a 
shared memory (or blackboard). However, there are some 
differences. In the blackboard systems, the problem 
solving process is typically centrally controlled, with a 
control process deciding which of the available 

Figure1. Basic structure of an agent. 
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knowledge source should be activated at which point. 
Blackboards are typically structured to suit a particular 
problem, being hierarchically sub-divided, with problems 
also being sub-divided and sub-problems combined in 
pre-determined ways. In a basic ATeam, there is no 
control and each agent operates without knowledge of the 
others. The memory is typically on a single level  [4]. 

 
 
 
 
 
 
 
 
 
 
 
 

ATeams thus sit in the intersection between a numbers 
of different problem solving methodologies. In particular, 
they offer a convenient architecture for implementing 
hybrid systems. They can support flexible distributed 
computing. Finally, they allow existing algorithms to be 
reused (with some limited modification). ATeams thus 
promise an efficient framework for building 
combinatorial optimization systems  [4]. 
3.  PROPOSED MULTI AGENT SYSTEM 

We propose a multi agent system that consists of 
initial scheduling agent, search agents, and schedule 
management agent. The architecture of our multi agent 
system is shown in Figure3. Initial scheduling agent 
generates a good solution for the job shop problem by a 
heuristic approach.  Search agents individually improve 
the solution of problem by iterative approaches. 
Scheduling management agent is a common memory that 
saves the best solution of search agents and is an 
interface between search agents.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The architecture has been implemented using client – 

server programming. First, initial scheduling agent starts 
to generate feasible solution and send the solution and 
related information to the search agents. Once search 

agents receive the information from initial scheduling 
agent, they individually improve the solution. Each of 
search agents is implemented as a separate client, which 
connects to the server. Scheduling management agent is 
similar to common memory and is server process. The 
server maintains the best solution and related information 
such as makespan and sequence of operations. When the 
client (search agent) is connected to the server 
(scheduling management agent), depending on the 
instantiation of the server, an agent may replace the 
solution it read, or it may add the new solution. This 
process continues until the termination criterion is 
satisfied. Termination criterion is to obtain the optimum 
solution (lower or upper bound for unknown optimum 
solution) or to carry out the number of evaluation.  

In this approach, the cooperation between agents is 
possible because one agent can work on the output of 
another. Thus it may increase synergy between agents 
and obtain the better solutions for the problem rather than 
individual agents. Also this approach allows parallel 
computations that may decrease the computational efforts 
for the problem.   
A.  Modified Shifting Bottleneck   

One of the components of the proposed multi agent 
system is initial scheduling agent. We can use any 
heuristics presented in the literature for this agent. 
Among them, a successful approach is the Shifting 
Bottleneck (SB). This paper presents a modified Shifting 
Bottleneck that is an effective heuristic approach which 
can generate a good solution in a low computational 
effort. In this section, the details of this approach are 
explained. 

SB was, first, presented by Adams in  [1].Later the 
other researchers have enhanced this method 
 [10] [3] [5] [22]. There have been extensive computational 
experiments evaluating the performance of several 
versions of SB routine on different shop configurations 
 [12], [30]. The general consensus is that the SB performs 
quite well compared to various dispatching rules on 
almost all problem types. 

The main strategy of the SB lies in relaxing the 
problem into m single machine subproblems and solving 
each single machine independently. This approach 
consists of four functions: problem decomposition, 
bottleneck identification, subproblem scheduling, and 
reoptimization. On a specified scheduling criterion, the 
machine having the maximum lower bound is selected as 
the bottleneck machine and the SB sequences the 
bottleneck machine first while ignoring the remaining 
unscheduled machines. After the machine is scheduled, 
the reoptimization procedure is triggered. The SB 
algorithm repeats the single machine scheduling 
procedure until all machines are scheduled  [34].  

Subproblems solution procedures (SSPs) and 
reoptimization are two main functions in SB  [12],  [30]. 

Figure3. Framework of proposed multi agent system. 
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They found that the better SSPs and reoptimization has 
higher solution quality and a system with more 
significant bottleneck machines might have higher search 
efficiency. In the large scale problems, implementing 
heuristic approaches for subproblems solution procedure 
in SB can decrease computational efforts. Although using 
the exact approaches for single machine (subproblems) 
might improve solution quality of the job shop problems, 
this usually increases computational effort in large scale 
problems. Reoptimization is important problem in SB 
that can increase computational efforts especially in the 
large scale problems. This paper presents a new approach 
that can omit reoptimization.  
    I)  Subproblems Solution Procedure (Single Machine) 

Schrage algorithm, a heuristic method suggested by 
Schrage in  [25], is an effective algorithm that is used in 
single machine problem. The algorithms of McMahon 
and Florian and Carlier are based on Schrage algorithm 
 [21],  [9]. In both methods Schrage heuristic is used at 
every node of a search tree to generate a complete 
solution. Thus, a good solution of Schrage heuristic can 
decrease the space of search in the enumeration 
approaches such as Carlier algorithm. Also computational 
efforts of heuristic approaches such as Schrage algorithm 
is lower than the exact algorithms such as branch and 
bound (Carlier algorithm in  [9]) in single machine 
problem. This can lead to decrease computational efforts 
in the job shop problems. Wenqi and Aihua presented a 
heuristic as Schrage algorithm with disturbance for 
solving subproblems  [32].Then, they base on the 
heuristic, presented improved shifting Bottleneck  (ISB) 
and showed that it has a better performance than SB  [32]. 
However, it has some drawbacks. This paper tries to 
resolve some of the drawbacks and present a modified 
Schrage algorithm that is more effective than previous 
Schrage algorithm and Schrage algorithm with a 
disturbance (DS). 

In a single machine problem with heads and tails, n 
independent jobs should be sequenced on a machine: a 
job i is available for processing by the machine at time ri , 
has to spend an amount of time pi on the machine and an 
amount of time qi in the system after its processing by the 
machine. The objective is to minimize the makespan.  

Carlier shows a sequence, in this problem, with a 
conjunctive graph G=(X, U)  [9]. The set X of nodes is 
obtained by adding two nodes O and * to the set i of jobs: 
X= I ∪ {O,*}, where, O is a job ‘beginning’, and * a job 
‘end’. The set U of arcs includes three sets: 
U=U1∪ U2∪ U3. Let U1 ={(O,i)| i∈I}; arc(O,i) is 
valued by ri so that job i cannot start before the point in 
time ri. Let U2 = {(i,*)| i∈I}; arc (i,*) is valued by qi+ pi 

since job i has to spend an amount of time qi+ pi in the 
system after its beginning of processing by the machine. 
Let U3 = {(i,j)|  job i precedes job j in the sequence}; 
arc(i,j) is valued by pi; these arcs set the sequence. The 

aim is to find a sequence that minimizes the value of the 
critical path in the associated conjunctive graph. 

In the Schrage algorithm the job ready with greatest qi 
is scheduled first. In this algorithm, U is the set of jobs 

already scheduled and U  is the set of jobs to be 
scheduled, and t is the time. In Schrage algorithm, when 
ri<rj and qi>qj the algorithm can generate the optimal 
solution and when ri<rj and qi<qj it may result in weak 
solution  [9]and  [32]. According the Schrage algorithm, in 

each stage, only the ready jobs, ( ri <= t ) from set U , 
are sequenced.  In the following we denote these jobs by 
the set R. However, it is possible that there exists a job k 

( Uk ∈ ) so that rk>t while the tail of job k (i.e., qk) is 
very larger than the tail of job i ( ∀  Ri ∈ ). In this 
situation it is logically better to take into account job k in 
the set R. This problem may lead to increase makespan. 
Therefore, we need to expand the scope of the set R to all 

jobs in U  so that the jobs with large tail that are not 
ready have chance to be selected. But the main problem 
rises which jobs can be added? In other words, in 
Schrage algorithm, if ri < rj and qi > qj , i is earlier 
sequenced j that is logically true and proved in literature 
 [9]. But if ri < rj and qi < qj we deal with this challenge 
that which of them must earlier be sequenced. This 
problem is studied by the following theorem. 

Theorem 1. In one machine sequencing problem, if 
there are two jobs i and j with properties 0 ≤ ri<rj and 
qi<qj, a necessary condition for sequencing j before i is 
(qj>m+ qi & pi > m) where , rj-t=m and pi >=0. 

Proof. We demonstrate the sequence of jobs with a 
conjunctive graph G=(X, U) similar to Carlier algorithm 
(Figure4).  
 
 
 
 
 
 
 
 
 
 
Figure4. Associated conjunctive graph. 

Let U be the set of jobs already scheduled, U  be the 
set of all other jobs and ck be the completion time of the 
jobs belonging to set U in stage k. job i is a job with 

minimum r in the set U . Let t be max (ck, ri). Assume 
that the Job j is a job with rj  so that rj > t and qj > qi. We 
prove that a necessary condition for sequencing j before i 
is: q j> m+qi & pi > m, where, rj-t=m and pi >=0. Here, 
there exist two options as follows: 

Option 1: job i to be scheduled before job j  
Let Li1 be the length of path that pass through 0, 1, i, 
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* and Lj1 be the length of path that pass through 0, 1, j, * 
and L1=Max (Li1, Lj1). Thus we have: 

        L1=Max (t+pi+qi , t+pi+pj+qj)                        (1) 
Option 2: job j to be scheduled before job i 
Let Li

2
 be the length of path that pass through 0, 1, i, * 

and Lj
2 be the length of path that pass through 0, 1, j, * 

and L2=Max (Li
2, Lj

2). Then, 
L2=Max (rj+pj+qj , rj+pj+pi+qi)  (2) 

Assume that job j is sequenced earlier than job i thus 
L2 must be lower than L1 because the aim is to minimize 
the longest path through 0 to *. Therefore, the formula 
(3) should be true. 
Max (rj+pj+qj ,rj+pj+pi+qi)<Max(t+pi+qi 

,t+pi+pj+qj) 
(3) 

 
This means the formulae (4) or (5) should be true: 
Max(rj+pj+qj , rj+pj+pi+qi)< t+pi+qi     (4) 
 
 Max(rj+pj+qj , rj+pj+pi+qi)< t+pi+pj+qj      (5) 
The formula (4) is true if the formulae (6) and (7) both 
are true.  
 rj+pj+qj < t+pi+qi                                                (6) 
 rj+pj+pi+qi< t+pi+qi                                                     (7) 

The formula (5) is true if the formulae (8) and (9) 
both are true.  
rj+pj+qj < t+pi+pj+qj                                                                 (8) 
 rj+pj+pi+qi < t+pi+pj+qj                                     (9) 
Let rj-t=m then : rj =m +t                                                                    
(10) 
By replacing (10) in the formulae (6),(7),(8),(9), 
respectively we have: 
m +t+pj+qj < t+pi+qi ⇒  qj < qi + pi -pj-m         (11) 
m +t +pj+pi+qi< t+pi+qi ⇒  m +pj <0               (12) 
m +t+pj+qj < t+pi+pj+qj ⇒  pj>m                     (13) 
m +t+pj+pi+qi < t+pi+pj+qj ⇒  qj>qi+m            (14) 

By the assumption: pj >=0 and m >=0, thus, Formula 
(12) is false. That means formula (7) is false, then the 
Formula (4) is false all the times. Formulae (10) and (11) 
by the assumption are true. That means Formulae (8) and 
(9) are true. So Formula (5) is also true all the times. 
Thus, Formula (3) is true that means L2<L1 and the 
theorem is proven. 

If the job j to be critical, i.e., belonging to critical path 
then as mentioned above necessary condition for 
sequencing j before i is (qj > m + qi & pi > m). But if the 
jobs j is not critical then sequencing it before i can be 
lead to increase delay (rj - t) and makespan. We define 
historically a condition for criticality of the job j by 
following. 
t+pi+pj+qj>h(s); k

UkUk
ks qMinptsh

i
i

∈∈

++= ∑)(   (15) 

Proposition1. In stage s and Uk ∈   

k
UkUk

ks qMinptsh
i

i
∈∈

++= ∑)( , is a lower bound on the 

optimal makespan. 
Proof. Carlier [13] proved that for all II ⊆1  

, iIiIi
iiIii qMinprMinIh

i
i

i ∈∈∈
++= ∑)(  is a lower bound on 

the optimal makespan. Since IU ⊆ , therefore h(s) is a 
lower bound on the optimal makespan. 

Now we present a modified Schrage algorithm 
according to theorem1. The steps of algorithm are shown 
in Figure 5. In this algorithm, in each stage, both ready 
jobs and the jobs with large tails (based on theorem1) can 
be sequenced. This improves the result of sequencing. 
Also in spit of DS algorithm, all of the unscheduled jobs 
are not candidate and are limited by the necessary 
condition. This can decrease computational effort in each 
stage especially in large problems. Furthermore, this 

algorithm does not depend on any coefficient such asδ . 
Experimental results show that M.A.S gets much better 
solutions than DS and SA.  

 
Figure5. Modified Schrage algorithm 

    II)  Modified Shifting Bottleneck  
This paper also presents a new approach for omitting 

reoptimization in SB procedure. In the proposed 
approach, the ready operations are sequenced first while 
the operations on critical machine should be preferenced. 
This can omit the reoptimization efforts. In our approach 
similar to SB, the job shop problem is decomposed into 
m single machines, but by the deferent way. In this 
approach, the ready operations on the same machine lie 
in a block and each of them is a single machine problem. 
In each stage, the operations in a block should be 
sequenced by a subproblem solution procedure, while the 
other unscheduled operations on the machine should be 
considered in the problem. If the operation on the block 
has not been prioritized, it might have delayed.   

Step1: Let t = iIi
rMin

i∈
, p = pl; U= Φ ,l is index of iIi

rMin
i∈

 

Step2: Find ri <= t+p; i∈ U , If ri <= t, then ui = qi, 
elseif ri > t & 
t+p+pi+qi> k

UkUk
k qMinpt

i
i

∈∈

++ ∑ , Uk ∈  then       

ui = qi- (ri  - t); otherwise  ui = 0. 
Step3: Choose job with the greatest ui (If there are ties, 

break them by giving preference to the minimum ri. 
If there are still ties, break them by giving 
preference to the greatest qj and are still ties, break 
them by giving preference to the greatest pj) , Set tj 
= max{t; rj}, U=U∪ {j}. 

Step4: Set t = max {tj +pj; i
Ui

rMin
∈

}. If U = I, stop; 

otherwise, return to Step 2. 
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For the sake of simplicity, we define critical machine 
in each stage as follows: 

)min(max* ∑
∈∈

∈
+=

Uo
ij

Uo
ijMj

ijij

prm ;j=1,2…m,i=1,2…

n 

(16) 
 

Subproblem solution procedure is based on modified 
Schrage algorithm presented in the pervious section. In 
this procedure, the prioritization is based on the head and 
tail of the operations (uij), however as stated above, we 
should prioritize the operations of critical machines, 
where, criticality can be considered as a fuzzy concept. 
All of the machine can be critical by a membership 
degree. Membership degree of a machine can be 
calculated as follows: 

.n1,2i , m1,2j ;
)min(max

min

…=…=
+

+

=
∑

∑

∈∈
∈

∈∈

Uo
ij

Uo
ij

Mj

Uo
ij

Uo
ij

j

ijij

ijij

pr

pr

µ  

(17) 

The delay on critical machine can increase makespan 
but in no critical machine the operations can be delayed. 
We use this concept in our approach. In the proposed 
approach, the criticality of machines takes into account in 
subproblem solution procedure. Subproblem solution 
procedure is defined in Figure6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure6. Subproblem solution procedure 
 
 
 
The symbols used in this algorithm are as follows: 

N: number of jobs              M: number of machine 

ji: job i                                mj: Machine j 

oij: Operation related to job i on machine j 
U: set of scheduled operations  
rij: the release time(head) of operation oij 

 

qij.: the delivery time(tail )of operation oi 
pij: the processing time(tail )of operation oij

 

Vj : set of the ready operations on machine j  
Ij : set of unscheduled operations on machine j 
Sij: set of the successor operations of operation oij 

 
The proposed algorithm for the job shop problem 

based on shifting Bottleneck  is shown in Figure7. 
 

                                                          
 
 
 
 
 
 
 
 
 
 
 

B.  Search Agents 
Search agents are important components of our multi 

agent systems. There are many intelligent search 
procedures or meta-heuristics such as genetic algorithm 
(GA) [13], simulated annealing (SA), tabu search (TS) 
and guided local search, etc  [13] [20] [11] [24] [6].  These 
approaches may take into account a search agent. The 
stated approaches are based on the local search principle 
where optimization starts from a given initial solution 
and iteratively generates new solutions, each of which is 
obtained from the previous one by performing a move (a 
small perturbation) on it. The set of allowed moves is 
specified by a neighborhood function, which is defined 
for every feasible schedule  [18]. We, in this paper, 
present a hybrid search approach for each agent. 

A neighborhood structure is a mechanism which can 
obtain a new set of neighbor solutions by applying a 
small perturbation to a given solution. Each neighbor 
solution is reached immediately from a given solution by 
a move  [17]. Neighborhood structure is directly effective 
on the efficiency of search algorithm. Therefore, 
unnecessary and infeasible moves must be eliminated if it 
is possible. The first successful neighborhood structure 
for the JSP was introduced by Van Laarhoven in  [31], 
and is often denoted by N1  [7]. The N1 neighborhood is 
generated by swapping any adjacent pair of critical 
operations on the same machine.  

However, the size of the neighborhood N1 is quite 
large and includes a great number of unimproved moves. 
An important observation is that unless the job-

Figure7. Modified Shifting Bottleneck. 

Step1: Let t = ij
Io

rMin
jij∈

,  

Step2: p = pl; l is index of ijIo
rMin

jij∈
,Find rij<= t+p; oij∈ Ij,   

 If   oij∈Vj, y1=.05, otherwise y1=0 
If rij > t and .97jµ > then y1=.05, otherwise y1=0 

If rij > t and 
Then 
 
If rij > t and  
Then                                          ,Otherwise ,   y1=0 
Step3: set  
Step4: Choose operation with the greatest ui (If there are 

ties, break them by giving preference to the minimum 
ri. If there are still ties, break them by giving 
preference to the greatest qj and are still ties, break 
them by giving preference to the greatest pj) ,  

     If oij*∈Vj Set  stij = max{t; rij}, Ij=Ij∪ {oij},  
     U=U∪ {oij},  oij* is labeled in set Vj otherwise, stop. 
Step5: Set t = max { stij +pj; ijIo

rMin
jij∈

}. If all operations 

of set Vj     are  labeled , stop;   Otherwise: return to Step2. 

Step1: Let  U= Φ   
Step2: calculate rij , 

 qij. 
Step3: find critical machine (m*). 

Step4: find the ready operations of set U  (rij=0), 
cluster the ready operations in same machine and find 
Vj. 

Step5: if Vj≠Φ  sequence the operations of set Vj by the 
subproblem solution procedure, Mj ∈∀ . 

Step6: if U = Φ , stop; otherwise, return to step 2. 

 
ij ijp+p +q

ij j
ij j

ij ijo Io I

p Min q
∈

∈

+∑;

3 iy =1.5  (r   - t)   ×  

ij ijp+p +q
ij j

ij j

ij ijo Io I

p Min q
∈

∈

<= +∑
3 iy =3  (r   - t)   ×  

3 1 2( ) (1 )ij iju q y y y= − ∗ − −  
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predecessor of u or the job-successor of v is on the 
critical path P(0, n), the interchange containing u and v 
cannot reduce the makespan, i.e., swapping internal 
operations within a block never gives an immediate 
improvement on the makespan  [20]. Therefore, the 
further refined neighborhoods N4, N5, and N6 have been 
proposed by  [11] [24] [6]. Those recently well-known 
neighborhoods are mainly based on the concept of block, 
in which a move is defined by inserting an operation to 
either the front or the rear of the critical block. The 
neighborhood N5 involves the reversal of a single border 
arc of a critical block3 and is substantially smaller than 
the other neighborhoods, whereas the neighborhoods N4 
and N6 involve the reversal of more than one disjunctive 
arc at a time and thus could investigate a considerably 
larger neighborhood. The neighborhood N6, which is 
also considered as an extension of the neighborhood N5, 
is more constrained than the neighborhood N4 and is 
currently one of the most effective and efficient 
neighborhood structures. 

A key component of the above neighborhood 
structures is the critical path, which is the longest route 

from start to end in directed graph Ds = (V, A∪S) and 
whose length represents the makespan. Any operation on 
the critical path is called a critical operation. It is also 
possible to decompose the critical path into a number of 
blocks. A block is a maximal sequence of adjacent 
critical operations that is processed on the same machine. 

We use each of the neighborhood structures in each 
agent. But the basic problem in local search is that how to 
avoid being trapped at a local optimum. We use another 
neighborhood function as exchange function, in order to 
avoid being trapped at a local optimum. Exchange is a 
neighborhood function used to move around in which 
any two randomly selected operations are simply 
swapped  [26]. Furthermore, we can apply the 
reoptimization phase in Shifting Bottleneck approach for 
improving the solution obtained.  

The proposed search agent combines the 
neighborhood search, random search and reoptimization 
phase in Shifting Bottleneck. The procedure starts with a 
feasible initial solution and stores it as the current seed 
and the best solution. The initial solution is generated by 
initial scheduling agent (modified shifting Bottleneck 
).The neighbors of the current seed are then produced by 
a neighborhood structure N1 to N6  [35]. These are 
candidate solutions. They are evaluated by an objective 
function, and a candidate which is the best or satisfies the 
aspiration criterion is selected as new seed solution. This 
selection is called a move. If the new seed solution is 
better than the current best solution, it is stored as new 
best solution. If the candidate solutions do not satisfy the 
aspiration criterion then generate neighbors of the current 
seed solution by Exchange function. Next, the 
reoptimization phase of MSB is executed on the current 

seed and found the best solution as current seed. 
Iterations are repeated until a stop criterion is satisfied. 
Figure12 shows the proposed search algorithm. The 
configuration of the above procedure is shown in Fig.8. 

4.  EXPERIMENTAL RESULTS 

We applied the proposed multi agent system to solve 
some 10×10 benchmark problems, specifically FT10, 
ABZ5, ABZ6, LA16, LA17, LA18, LA19, and LA20 
 [15] [1] [19].A 10×10 problem has 10 jobs and 10 
machines, and thus 100 variables 

The proposed multi agent system approach (MAS) is 
compared by single agent. Comparisons are based on 
three main factors: Mean of makespan (Me.), Standard 
Deviation, Best solution (B.S). CPU time and evaluations 
as computations efforts is fixed for two approaches.  The 
results for ten experiments are represented in table1. 

Experiment results show the superiority of the 
proposed MAS approach in comparison to single agent. 
As shown in table 2, the mean of makespan and best 
solution in the proposed approach are lower than single 
agent approach. Standard deviation is almost same for 
two approaches. Thus the proposed approach generated 
the better results. The results have obtained in equal 
evaluations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure8. Flowchart of proposed search algorithm. 
 
 

5.  CONCLUSIONS AND FUTURE WORKS 

We present a multi agent system for the job shop 

Read an initial solution from initial solution 
agent, store it as the current seed and the 
best solution, and set parameters. 

Generate neighbors of the current seed 
solution by a neighborhood structure 

Is stop criterion 
satisfied?

Does the aspiration 
criterion satisfy?

Reoptimize based on SB and find the best 
solution

Generate neighbors of the  
current seed solution by  
Exchange function

Output optimization 
 result 

Is stop criterion 
satisfied?

Yes 

Yes 

Yes 

No

No 
No 

Store the aspiration solution as the new 
seed and the best solution
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scheduling problems. The proposed system consists of 
initial scheduling agent, search agents, and schedule 
management agent. In initial scheduling agent, a 
modified Shifting Bottleneck  is proposed. That is, an 
effective heuristic approach and can generate a good 
solution in a low computational effort. In search agents, a 
hybrid search approach is presented. The schedule 
management agent can manage the system. Finally, the 
proposed agent based system is tested and validated by 

some benchmark problems. The results show the 
superiority of the proposed system in terms makespan 
minimization and CPU times.  

We implemented this approach for the classic job shop 
problem. In future research, we can apply for the other 
problems in scheduling. Moreover, respond to this 
question that how much the number of agents and 
communication frequencies effect on solution quality and 
computations efforts, can be future researches. 

 
TABLE 1 COMPARISON OF THE PROPOSED APPROACH TO THE SINGLE AGENT FOR INSTANCE PROBLEMS 

  Single agent M.A.S proposed 
problem O.N 

 Me. B.S SD Me. B.S SD 
FT10 930 1028.7 1005 10.66 1014.3 985 13.53 
ABZ5 1234 1278.6 1250 11.77 1271 1249 12.95 
ABZ6 943 951.7 948 4.29 949.5 948 1.58 
LA16 945 1025.1 990 15.76 1010.5 988 16.33 
LA17 784 806.7 793 14.02 799.7 792 11.50 
LA18 848 873.9 853 14.23 867.3 853 11.54 
LA19 842 876.6 875 1.45 876.2 875 1.03 
LA20 902 934.9 918 9.12 927.6 918 7.65 
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