

 Amirkabir / MISC / Vol . 43 / No.1 / Spring 2011

7

A multi Agent System Based on Modified Shifting
Bottleneck and Search Techniques for Job Shop

Scheduling Problems
M.H Karimi Gavareshki i and M.H Fazel Zarandi ii*

Received 29 July 2007; received in revised 12 April 2009; accepted 6 May 2009

ABSTRACT

This paper presents a multi agent system for the job shop scheduling problems. The proposed system
consists of initial scheduling agent, search agents, and schedule management agent. In initial scheduling
agent, a modified Shifting Bottleneck is proposed. That is, an effective heuristic approach and can generate a
good solution in a low computational effort. In search agents, a hybrid search approach is presented. The
schedule management agent can manage the system. Finally, the proposed agent based system is tested and
validated by some benchmark problems. The results show the superiority of the proposed system in terms of
makespan minimization and CPU times.

KEYWORDS

Job shop scheduling, multi agent system, shifting Bottleneck , search technique.

i M.H Karimi Gavareshki , Ph.D., Department of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran , P.O. Box: 15875-4413
ii * Corresponding Author, M.H Fazel Zarandi, Associate Professor, Department of Industrial Engineering, Amirkabir University of Technology,
Tehran, Iran, P.O. Box: 15875-4413. Email: mh_karimi@aut.ac.ir, zarandi@aut.ac.ir

1. INTRODUCTION

The job shop scheduling problem with which we are
concerned can be described as follows: The problem
consists of scheduling the jobs on the machines with the
objective to minimize the makespan. Any schedule is
subjected to two constraints: (i) the precedence of the
operations on each job must be respected; (ii) once a
machine starts processing an operation it cannot be
interrupted, and each machine can process at most one
operation at a time.

The job shop scheduling problems are among the
hardest combinatorial optimization problems, and are
strongly NP-complete [16]. These problems have been
widely studied in the literature by various methods:
heuristics, shifting Bottleneck , constraint propagation
techniques, tabu search, simulated annealing, genetic
algorithms, neural networks, etc.

Most of these methods encounter great difficulties
when they are applied to real situations, because these
scheduling methods use simplified theoretical models and
are essentially centralized in the sense that all the
computations are carried out in a central computing
unit/center. These approaches are therefore inflexible,
expensive and slow to satisfy real world scheduling
problems. In particular, these approaches are not robust
enough to accommodate the dynamic nature of the

manufacturing scheduling problem.
Within the past decade, a number of researchers have

applied agent technology in attempts to resolve the
scheduling problems [27]. The studies undertaken in
distributed scheduling may be classified into three
categories: hierarchical, heterarchical, and centralized
control [29]. In a hierarchical approach like distributed
asynchronous system DAS, the system is co-ordinated
level by level and the corresponding parts are
synchronized [8]. In the heterarchical approach, the
systems are co-ordinated by allowing the agents to
negotiate amongst themselves. [2] Lastly, the agents can
be co-ordinated by a single module utilizing centralized
control. Talukdar and Murthy proposed the teams of
autonomous agents (ATeams) to solve large
combinatorial optimization problems using a multi agent
based distributed problem solving method where the
agents asynchronously build shared solutions [28], [23].
This method allows the system either to be centrally
controlled or decentralized. In an ATeams, a collection of
agents co-operates by sharing solutions through a
common memory. The architecture is asynchronous and
the agents are autonomous. Reference [28] reports success
on a number of different problems. Aydin tested the
ATeams on the job shop scheduling problem. He shows
that the results of ATeams are better than individual
agent but that it depends on the portfolio of agents and on

Amirkabir / MISC / Vol . 43 / No.1 / Spring2011

8

the way in which the memory is managed [4].
This paper present a new multi agent system based on

Ateams by different framework for the job shop
scheduling problems. The proposed system consists of
initial scheduling agent, search agents and schedule
management agent. Moreover, this paper presents a
modified Shifting Bottleneck in initial scheduling agent.
That is an effective heuristic approach and generates a
good solution in a low computational effort. Also, the
paper presents a hybrid search approach in search agents.
One of the contributions of this paper is presenting a
modified Shifting Bottleneck approach for job shop
scheduling that is used in the proposed multi agent
system. Subproblem solution procedure and
reoptimization are two important factors in SB approach
that can increase computational efforts. In large scale
problems, we need effective procedures to decrease the
computational efforts. This paper presents a modified
Schrage algorithm for single machine scheduling
problems with heads and tails that is an effective
subproblem solution procedure. Then we present a
heuristic approach for job shop scheduling that resolve
reoptimization difficulties in SB. Finally, the proposed
multi agent system is tested and validated by some
benchmark problems. Experimental results show the
superiority of our system.

The rest of this paper is organized as follows: Section
2 presents an overview of multi agent systems. In section
3 the proposed multi agent system is presented. In
Section 4, experimental results of the proposed system in
comparison with another system are presented. Finally,
conclusions and future works are presented in Section 5.

2. MULTI AGENT SYSTEMS

In general, an agent is a computer system that is
situated in some environment, and that is capable of
flexible and autonomous action in this environment in
order to meet its design objectives. By flexible we mean
that the system must be responsive, proactive, and social
 [33]. Various definitions have been proposed for the term
multi-agent system (MAS). MAS are a loosely coupled
network of problem solvers that work together to solve
problems that are beyond the individual capabilities or
knowledge of each problem solver. Ferber defines MAS
as a system composed of a population of autonomous
agents, which interact with each other to reach common
objectives, while simultaneously each agent pursues
individual objectives [14]. Various interesting features of
agents have been proposed and defined in the literature.
However, some of them are more important and useful in
agent-based manufacturing, e.g., autonomous,
cooperative, proactive, and adaptive [27].

As shown in Figure1, the basic structure of an agent
consists of the following three modules, namely, the
manager module, message processor, and communication

protocol [36] :

• Manager module: This is responsible for interacting
with other agents, and executing the assigned tasks
with a manager unit, a knowledge base, a method
based consisting of the required operations, a
database, and an agenda, which is a list of the
scheduled tasks.

• Message processor: This module stores and processes
the messages received and the tasks assigned from the
users or other agents.

• Communication protocol: This guarantees the
continuity and compatibility of communication
between the agents using a unified communication
language and protocol.

An A-Team is a team of software agents that
cooperate to solve a problem by dynamically evolving a
shared population of solutions [23], [28]. Reference [23]
proposes architecture of autonomous agent operating
asynchronously on a shared population of solution
attempts, which they call “ATeams”. In the basic
architecture, each agent is completely independent from
the rest, and operates by selecting a solution from the
memory, carrying out some operations on that solution,
and then placing it back in the memory. Co-operation is
thus archived by sharing solutions. The population of
solution is controlled by a subset of destroyer agents,
which evaluate solutions according to certain criteria and
remove unwanted solutions. The organization of the
agents is that loose-agents may appear and disappear
from the team without penalty, may be widely distributed
and do not communicate directly with other agents. An
instance of ATeam architecture is shown in Figure2.
Here, the system consists of a team of agents and a single
memory, which has particular communications with each
agent [4].

ATeams are, in many respects, similar to blackboard
system, in that a collection of processes co-operates to
solve problems by posting the results of actions to a
shared memory (or blackboard). However, there are some
differences. In the blackboard systems, the problem
solving process is typically centrally controlled, with a
control process deciding which of the available

Figure1. Basic structure of an agent.

Communication protocol

Message Processor

Agenda

Manager

Knowledge
Base

Method
Base

Data
Base

Interface

 Amirkabir / MISC / Vol . 43 / No.1 / Spring 2011
9

A

Memory

A

A

A

A

A

A

A

knowledge source should be activated at which point.
Blackboards are typically structured to suit a particular
problem, being hierarchically sub-divided, with problems
also being sub-divided and sub-problems combined in
pre-determined ways. In a basic ATeam, there is no
control and each agent operates without knowledge of the
others. The memory is typically on a single level [4].

ATeams thus sit in the intersection between a numbers
of different problem solving methodologies. In particular,
they offer a convenient architecture for implementing
hybrid systems. They can support flexible distributed
computing. Finally, they allow existing algorithms to be
reused (with some limited modification). ATeams thus
promise an efficient framework for building
combinatorial optimization systems [4].
3. PROPOSED MULTI AGENT SYSTEM

We propose a multi agent system that consists of
initial scheduling agent, search agents, and schedule
management agent. The architecture of our multi agent
system is shown in Figure3. Initial scheduling agent
generates a good solution for the job shop problem by a
heuristic approach. Search agents individually improve
the solution of problem by iterative approaches.
Scheduling management agent is a common memory that
saves the best solution of search agents and is an
interface between search agents.

The architecture has been implemented using client –

server programming. First, initial scheduling agent starts
to generate feasible solution and send the solution and
related information to the search agents. Once search

agents receive the information from initial scheduling
agent, they individually improve the solution. Each of
search agents is implemented as a separate client, which
connects to the server. Scheduling management agent is
similar to common memory and is server process. The
server maintains the best solution and related information
such as makespan and sequence of operations. When the
client (search agent) is connected to the server
(scheduling management agent), depending on the
instantiation of the server, an agent may replace the
solution it read, or it may add the new solution. This
process continues until the termination criterion is
satisfied. Termination criterion is to obtain the optimum
solution (lower or upper bound for unknown optimum
solution) or to carry out the number of evaluation.

In this approach, the cooperation between agents is
possible because one agent can work on the output of
another. Thus it may increase synergy between agents
and obtain the better solutions for the problem rather than
individual agents. Also this approach allows parallel
computations that may decrease the computational efforts
for the problem.
A. Modified Shifting Bottleneck

One of the components of the proposed multi agent
system is initial scheduling agent. We can use any
heuristics presented in the literature for this agent.
Among them, a successful approach is the Shifting
Bottleneck (SB). This paper presents a modified Shifting
Bottleneck that is an effective heuristic approach which
can generate a good solution in a low computational
effort. In this section, the details of this approach are
explained.

SB was, first, presented by Adams in [1].Later the
other researchers have enhanced this method
 [10] [3] [5] [22]. There have been extensive computational
experiments evaluating the performance of several
versions of SB routine on different shop configurations
 [12], [30]. The general consensus is that the SB performs
quite well compared to various dispatching rules on
almost all problem types.

The main strategy of the SB lies in relaxing the
problem into m single machine subproblems and solving
each single machine independently. This approach
consists of four functions: problem decomposition,
bottleneck identification, subproblem scheduling, and
reoptimization. On a specified scheduling criterion, the
machine having the maximum lower bound is selected as
the bottleneck machine and the SB sequences the
bottleneck machine first while ignoring the remaining
unscheduled machines. After the machine is scheduled,
the reoptimization procedure is triggered. The SB
algorithm repeats the single machine scheduling
procedure until all machines are scheduled [34].

Subproblems solution procedures (SSPs) and
reoptimization are two main functions in SB [12], [30].

Figure3. Framework of proposed multi agent system.

Initial Scheduling Agent (Modified
Shifting Bottleneck)

Scheduling Management Agent

Search
Agent

Search
Agent

Search
Agent

Search
Agent

Figure2. An instance of ATeams architecture.

Amirkabir / MISC / Vol . 43 / No.1 / Spring2011

10

They found that the better SSPs and reoptimization has
higher solution quality and a system with more
significant bottleneck machines might have higher search
efficiency. In the large scale problems, implementing
heuristic approaches for subproblems solution procedure
in SB can decrease computational efforts. Although using
the exact approaches for single machine (subproblems)
might improve solution quality of the job shop problems,
this usually increases computational effort in large scale
problems. Reoptimization is important problem in SB
that can increase computational efforts especially in the
large scale problems. This paper presents a new approach
that can omit reoptimization.
 I) Subproblems Solution Procedure (Single Machine)

Schrage algorithm, a heuristic method suggested by
Schrage in [25], is an effective algorithm that is used in
single machine problem. The algorithms of McMahon
and Florian and Carlier are based on Schrage algorithm
 [21], [9]. In both methods Schrage heuristic is used at
every node of a search tree to generate a complete
solution. Thus, a good solution of Schrage heuristic can
decrease the space of search in the enumeration
approaches such as Carlier algorithm. Also computational
efforts of heuristic approaches such as Schrage algorithm
is lower than the exact algorithms such as branch and
bound (Carlier algorithm in [9]) in single machine
problem. This can lead to decrease computational efforts
in the job shop problems. Wenqi and Aihua presented a
heuristic as Schrage algorithm with disturbance for
solving subproblems [32].Then, they base on the
heuristic, presented improved shifting Bottleneck (ISB)
and showed that it has a better performance than SB [32].
However, it has some drawbacks. This paper tries to
resolve some of the drawbacks and present a modified
Schrage algorithm that is more effective than previous
Schrage algorithm and Schrage algorithm with a
disturbance (DS).

In a single machine problem with heads and tails, n
independent jobs should be sequenced on a machine: a
job i is available for processing by the machine at time ri ,
has to spend an amount of time pi on the machine and an
amount of time qi in the system after its processing by the
machine. The objective is to minimize the makespan.

Carlier shows a sequence, in this problem, with a
conjunctive graph G=(X, U) [9]. The set X of nodes is
obtained by adding two nodes O and * to the set i of jobs:
X= I ∪ {O,*}, where, O is a job ‘beginning’, and * a job
‘end’. The set U of arcs includes three sets:
U=U1∪ U2∪ U3. Let U1 ={(O,i)| i∈I}; arc(O,i) is
valued by ri so that job i cannot start before the point in
time ri. Let U2 = {(i,*)| i∈I}; arc (i,*) is valued by qi+ pi

since job i has to spend an amount of time qi+ pi in the
system after its beginning of processing by the machine.
Let U3 = {(i,j)| job i precedes job j in the sequence};
arc(i,j) is valued by pi; these arcs set the sequence. The

aim is to find a sequence that minimizes the value of the
critical path in the associated conjunctive graph.

In the Schrage algorithm the job ready with greatest qi
is scheduled first. In this algorithm, U is the set of jobs

already scheduled and U is the set of jobs to be
scheduled, and t is the time. In Schrage algorithm, when
ri<rj and qi>qj the algorithm can generate the optimal
solution and when ri<rj and qi<qj it may result in weak
solution [9]and [32]. According the Schrage algorithm, in

each stage, only the ready jobs, (ri <= t) from set U ,
are sequenced. In the following we denote these jobs by
the set R. However, it is possible that there exists a job k

(Uk ∈) so that rk>t while the tail of job k (i.e., qk) is
very larger than the tail of job i (∀ Ri ∈). In this
situation it is logically better to take into account job k in
the set R. This problem may lead to increase makespan.
Therefore, we need to expand the scope of the set R to all

jobs in U so that the jobs with large tail that are not
ready have chance to be selected. But the main problem
rises which jobs can be added? In other words, in
Schrage algorithm, if ri < rj and qi > qj , i is earlier
sequenced j that is logically true and proved in literature
 [9]. But if ri < rj and qi < qj we deal with this challenge
that which of them must earlier be sequenced. This
problem is studied by the following theorem.

Theorem 1. In one machine sequencing problem, if
there are two jobs i and j with properties 0 ≤ ri<rj and
qi<qj, a necessary condition for sequencing j before i is
(qj>m+ qi & pi > m) where , rj-t=m and pi >=0.

Proof. We demonstrate the sequence of jobs with a
conjunctive graph G=(X, U) similar to Carlier algorithm
(Figure4).

Figure4. Associated conjunctive graph.

Let U be the set of jobs already scheduled, U be the
set of all other jobs and ck be the completion time of the
jobs belonging to set U in stage k. job i is a job with

minimum r in the set U . Let t be max (ck, ri). Assume
that the Job j is a job with rj so that rj > t and qj > qi. We
prove that a necessary condition for sequencing j before i
is: q j> m+qi & pi > m, where, rj-t=m and pi >=0. Here,
there exist two options as follows:

Option 1: job i to be scheduled before job j
Let Li1 be the length of path that pass through 0, 1, i,

i

j

o *

ri

pi

pi+qi

pj+qj
rj

 Amirkabir / MISC / Vol . 43 / No.1 / Spring 2011
11

* and Lj1 be the length of path that pass through 0, 1, j, *
and L1=Max (Li1, Lj1). Thus we have:

 L1=Max (t+pi+qi , t+pi+pj+qj) (1)
Option 2: job j to be scheduled before job i
Let Li

2
 be the length of path that pass through 0, 1, i, *

and Lj
2 be the length of path that pass through 0, 1, j, *

and L2=Max (Li
2, Lj

2). Then,
L2=Max (rj+pj+qj , rj+pj+pi+qi) (2)

Assume that job j is sequenced earlier than job i thus
L2 must be lower than L1 because the aim is to minimize
the longest path through 0 to *. Therefore, the formula
(3) should be true.
Max (rj+pj+qj ,rj+pj+pi+qi)<Max(t+pi+qi

,t+pi+pj+qj)
(3)

This means the formulae (4) or (5) should be true:
Max(rj+pj+qj , rj+pj+pi+qi)< t+pi+qi (4)

 Max(rj+pj+qj , rj+pj+pi+qi)< t+pi+pj+qj (5)
The formula (4) is true if the formulae (6) and (7) both
are true.
 rj+pj+qj < t+pi+qi (6)
 rj+pj+pi+qi< t+pi+qi (7)

The formula (5) is true if the formulae (8) and (9)
both are true.
rj+pj+qj < t+pi+pj+qj (8)
 rj+pj+pi+qi < t+pi+pj+qj (9)
Let rj-t=m then : rj =m +t
(10)
By replacing (10) in the formulae (6),(7),(8),(9),
respectively we have:
m +t+pj+qj < t+pi+qi ⇒ qj < qi + pi -pj-m (11)
m +t +pj+pi+qi< t+pi+qi ⇒ m +pj <0 (12)
m +t+pj+qj < t+pi+pj+qj ⇒ pj>m (13)
m +t+pj+pi+qi < t+pi+pj+qj ⇒ qj>qi+m (14)

By the assumption: pj >=0 and m >=0, thus, Formula
(12) is false. That means formula (7) is false, then the
Formula (4) is false all the times. Formulae (10) and (11)
by the assumption are true. That means Formulae (8) and
(9) are true. So Formula (5) is also true all the times.
Thus, Formula (3) is true that means L2<L1 and the
theorem is proven.

If the job j to be critical, i.e., belonging to critical path
then as mentioned above necessary condition for
sequencing j before i is (qj > m + qi & pi > m). But if the
jobs j is not critical then sequencing it before i can be
lead to increase delay (rj - t) and makespan. We define
historically a condition for criticality of the job j by
following.
t+pi+pj+qj>h(s); k

UkUk
ks qMinptsh

i
i

∈∈

++= ∑)((15)

Proposition1. In stage s and Uk ∈

k
UkUk

ks qMinptsh
i

i
∈∈

++= ∑)(, is a lower bound on the

optimal makespan.
Proof. Carlier [13] proved that for all II ⊆1

, iIiIi
iiIii qMinprMinIh

i
i

i ∈∈∈
++= ∑)(is a lower bound on

the optimal makespan. Since IU ⊆ , therefore h(s) is a
lower bound on the optimal makespan.

Now we present a modified Schrage algorithm
according to theorem1. The steps of algorithm are shown
in Figure 5. In this algorithm, in each stage, both ready
jobs and the jobs with large tails (based on theorem1) can
be sequenced. This improves the result of sequencing.
Also in spit of DS algorithm, all of the unscheduled jobs
are not candidate and are limited by the necessary
condition. This can decrease computational effort in each
stage especially in large problems. Furthermore, this

algorithm does not depend on any coefficient such asδ .
Experimental results show that M.A.S gets much better
solutions than DS and SA.

Figure5. Modified Schrage algorithm

 II) Modified Shifting Bottleneck
This paper also presents a new approach for omitting

reoptimization in SB procedure. In the proposed
approach, the ready operations are sequenced first while
the operations on critical machine should be preferenced.
This can omit the reoptimization efforts. In our approach
similar to SB, the job shop problem is decomposed into
m single machines, but by the deferent way. In this
approach, the ready operations on the same machine lie
in a block and each of them is a single machine problem.
In each stage, the operations in a block should be
sequenced by a subproblem solution procedure, while the
other unscheduled operations on the machine should be
considered in the problem. If the operation on the block
has not been prioritized, it might have delayed.

Step1: Let t = iIi
rMin

i∈
, p = pl; U= Φ ,l is index of iIi

rMin
i∈

Step2: Find ri <= t+p; i∈ U , If ri <= t, then ui = qi,
elseif ri > t &
t+p+pi+qi> k

UkUk
k qMinpt

i
i

∈∈

++ ∑ , Uk ∈ then

ui = qi- (ri - t); otherwise ui = 0.
Step3: Choose job with the greatest ui (If there are ties,

break them by giving preference to the minimum ri.
If there are still ties, break them by giving
preference to the greatest qj and are still ties, break
them by giving preference to the greatest pj) , Set tj
= max{t; rj}, U=U∪ {j}.

Step4: Set t = max {tj +pj; i
Ui

rMin
∈

}. If U = I, stop;

otherwise, return to Step 2.

Amirkabir / MISC / Vol . 43 / No.1 / Spring2011

12

For the sake of simplicity, we define critical machine
in each stage as follows:

)min(max* ∑
∈∈

∈
+=

Uo
ij

Uo
ijMj

ijij

prm ;j=1,2…m,i=1,2…

n

(16)

Subproblem solution procedure is based on modified
Schrage algorithm presented in the pervious section. In
this procedure, the prioritization is based on the head and
tail of the operations (uij), however as stated above, we
should prioritize the operations of critical machines,
where, criticality can be considered as a fuzzy concept.
All of the machine can be critical by a membership
degree. Membership degree of a machine can be
calculated as follows:

.n1,2i , m1,2j ;
)min(max

min

…=…=
+

+

=
∑

∑

∈∈
∈

∈∈

Uo
ij

Uo
ij

Mj

Uo
ij

Uo
ij

j

ijij

ijij

pr

pr

µ

(17)

The delay on critical machine can increase makespan
but in no critical machine the operations can be delayed.
We use this concept in our approach. In the proposed
approach, the criticality of machines takes into account in
subproblem solution procedure. Subproblem solution
procedure is defined in Figure6.

Figure6. Subproblem solution procedure

The symbols used in this algorithm are as follows:

N: number of jobs M: number of machine

ji: job i mj: Machine j

oij: Operation related to job i on machine j
U: set of scheduled operations
rij: the release time(head) of operation oij

qij.: the delivery time(tail)of operation oi
pij: the processing time(tail)of operation oij

Vj : set of the ready operations on machine j
Ij : set of unscheduled operations on machine j
Sij: set of the successor operations of operation oij

The proposed algorithm for the job shop problem

based on shifting Bottleneck is shown in Figure7.

B. Search Agents
Search agents are important components of our multi

agent systems. There are many intelligent search
procedures or meta-heuristics such as genetic algorithm
(GA) [13], simulated annealing (SA), tabu search (TS)
and guided local search, etc [13] [20] [11] [24] [6]. These
approaches may take into account a search agent. The
stated approaches are based on the local search principle
where optimization starts from a given initial solution
and iteratively generates new solutions, each of which is
obtained from the previous one by performing a move (a
small perturbation) on it. The set of allowed moves is
specified by a neighborhood function, which is defined
for every feasible schedule [18]. We, in this paper,
present a hybrid search approach for each agent.

A neighborhood structure is a mechanism which can
obtain a new set of neighbor solutions by applying a
small perturbation to a given solution. Each neighbor
solution is reached immediately from a given solution by
a move [17]. Neighborhood structure is directly effective
on the efficiency of search algorithm. Therefore,
unnecessary and infeasible moves must be eliminated if it
is possible. The first successful neighborhood structure
for the JSP was introduced by Van Laarhoven in [31],
and is often denoted by N1 [7]. The N1 neighborhood is
generated by swapping any adjacent pair of critical
operations on the same machine.

However, the size of the neighborhood N1 is quite
large and includes a great number of unimproved moves.
An important observation is that unless the job-

Figure7. Modified Shifting Bottleneck.

Step1: Let t = ij
Io

rMin
jij∈

,

Step2: p = pl; l is index of ijIo
rMin

jij∈
,Find rij<= t+p; oij∈ Ij,

 If oij∈Vj, y1=.05, otherwise y1=0
If rij > t and .97jµ > then y1=.05, otherwise y1=0

If rij > t and
Then

If rij > t and
Then ,Otherwise , y1=0
Step3: set
Step4: Choose operation with the greatest ui (If there are

ties, break them by giving preference to the minimum
ri. If there are still ties, break them by giving
preference to the greatest qj and are still ties, break
them by giving preference to the greatest pj) ,

 If oij*∈Vj Set stij = max{t; rij}, Ij=Ij∪ {oij},
 U=U∪ {oij}, oij* is labeled in set Vj otherwise, stop.
Step5: Set t = max { stij +pj; ijIo

rMin
jij∈

}. If all operations

of set Vj are labeled , stop; Otherwise: return to Step2.

Step1: Let U= Φ
Step2: calculate rij ,

 qij.
Step3: find critical machine (m*).

Step4: find the ready operations of set U (rij=0),
cluster the ready operations in same machine and find
Vj.

Step5: if Vj≠Φ sequence the operations of set Vj by the
subproblem solution procedure, Mj ∈∀ .

Step6: if U = Φ , stop; otherwise, return to step 2.

ij ijp+p +q

ij j
ij j

ij ijo Io I

p Min q
∈

∈

+∑;

3 iy =1.5 (r - t) ×

ij ijp+p +q
ij j

ij j

ij ijo Io I

p Min q
∈

∈

<= +∑
3 iy =3 (r - t) ×

3 1 2() (1)ij iju q y y y= − ∗ − −

 Amirkabir / MISC / Vol . 43 / No.1 / Spring 2011
13

predecessor of u or the job-successor of v is on the
critical path P(0, n), the interchange containing u and v
cannot reduce the makespan, i.e., swapping internal
operations within a block never gives an immediate
improvement on the makespan [20]. Therefore, the
further refined neighborhoods N4, N5, and N6 have been
proposed by [11] [24] [6]. Those recently well-known
neighborhoods are mainly based on the concept of block,
in which a move is defined by inserting an operation to
either the front or the rear of the critical block. The
neighborhood N5 involves the reversal of a single border
arc of a critical block3 and is substantially smaller than
the other neighborhoods, whereas the neighborhoods N4
and N6 involve the reversal of more than one disjunctive
arc at a time and thus could investigate a considerably
larger neighborhood. The neighborhood N6, which is
also considered as an extension of the neighborhood N5,
is more constrained than the neighborhood N4 and is
currently one of the most effective and efficient
neighborhood structures.

A key component of the above neighborhood
structures is the critical path, which is the longest route

from start to end in directed graph Ds = (V, A∪S) and
whose length represents the makespan. Any operation on
the critical path is called a critical operation. It is also
possible to decompose the critical path into a number of
blocks. A block is a maximal sequence of adjacent
critical operations that is processed on the same machine.

We use each of the neighborhood structures in each
agent. But the basic problem in local search is that how to
avoid being trapped at a local optimum. We use another
neighborhood function as exchange function, in order to
avoid being trapped at a local optimum. Exchange is a
neighborhood function used to move around in which
any two randomly selected operations are simply
swapped [26]. Furthermore, we can apply the
reoptimization phase in Shifting Bottleneck approach for
improving the solution obtained.

The proposed search agent combines the
neighborhood search, random search and reoptimization
phase in Shifting Bottleneck. The procedure starts with a
feasible initial solution and stores it as the current seed
and the best solution. The initial solution is generated by
initial scheduling agent (modified shifting Bottleneck
).The neighbors of the current seed are then produced by
a neighborhood structure N1 to N6 [35]. These are
candidate solutions. They are evaluated by an objective
function, and a candidate which is the best or satisfies the
aspiration criterion is selected as new seed solution. This
selection is called a move. If the new seed solution is
better than the current best solution, it is stored as new
best solution. If the candidate solutions do not satisfy the
aspiration criterion then generate neighbors of the current
seed solution by Exchange function. Next, the
reoptimization phase of MSB is executed on the current

seed and found the best solution as current seed.
Iterations are repeated until a stop criterion is satisfied.
Figure12 shows the proposed search algorithm. The
configuration of the above procedure is shown in Fig.8.

4. EXPERIMENTAL RESULTS

We applied the proposed multi agent system to solve
some 10×10 benchmark problems, specifically FT10,
ABZ5, ABZ6, LA16, LA17, LA18, LA19, and LA20
 [15] [1] [19].A 10×10 problem has 10 jobs and 10
machines, and thus 100 variables

The proposed multi agent system approach (MAS) is
compared by single agent. Comparisons are based on
three main factors: Mean of makespan (Me.), Standard
Deviation, Best solution (B.S). CPU time and evaluations
as computations efforts is fixed for two approaches. The
results for ten experiments are represented in table1.

Experiment results show the superiority of the
proposed MAS approach in comparison to single agent.
As shown in table 2, the mean of makespan and best
solution in the proposed approach are lower than single
agent approach. Standard deviation is almost same for
two approaches. Thus the proposed approach generated
the better results. The results have obtained in equal
evaluations.

Figure8. Flowchart of proposed search algorithm.

5. CONCLUSIONS AND FUTURE WORKS

We present a multi agent system for the job shop

Read an initial solution from initial solution
agent, store it as the current seed and the
best solution, and set parameters.

Generate neighbors of the current seed
solution by a neighborhood structure

Is stop criterion
satisfied?

Does the aspiration
criterion satisfy?

Reoptimize based on SB and find the best
solution

Generate neighbors of the
current seed solution by
Exchange function

Output optimization
 result

Is stop criterion
satisfied?

Yes

Yes

Yes

No

No
No

Store the aspiration solution as the new
seed and the best solution

Amirkabir / MISC / Vol . 43 / No.1 / Spring2011

14

scheduling problems. The proposed system consists of
initial scheduling agent, search agents, and schedule
management agent. In initial scheduling agent, a
modified Shifting Bottleneck is proposed. That is, an
effective heuristic approach and can generate a good
solution in a low computational effort. In search agents, a
hybrid search approach is presented. The schedule
management agent can manage the system. Finally, the
proposed agent based system is tested and validated by

some benchmark problems. The results show the
superiority of the proposed system in terms makespan
minimization and CPU times.

We implemented this approach for the classic job shop
problem. In future research, we can apply for the other
problems in scheduling. Moreover, respond to this
question that how much the number of agents and
communication frequencies effect on solution quality and
computations efforts, can be future researches.

TABLE 1 COMPARISON OF THE PROPOSED APPROACH TO THE SINGLE AGENT FOR INSTANCE PROBLEMS

 Single agent M.A.S proposed
problem O.N

 Me. B.S SD Me. B.S SD
FT10 930 1028.7 1005 10.66 1014.3 985 13.53
ABZ5 1234 1278.6 1250 11.77 1271 1249 12.95
ABZ6 943 951.7 948 4.29 949.5 948 1.58
LA16 945 1025.1 990 15.76 1010.5 988 16.33
LA17 784 806.7 793 14.02 799.7 792 11.50
LA18 848 873.9 853 14.23 867.3 853 11.54
LA19 842 876.6 875 1.45 876.2 875 1.03
LA20 902 934.9 918 9.12 927.6 918 7.65

6. REFERENCES
[1] J. Adams, E. Balas, D. Zawack, "The shifting bottleneck procedure

for job shop scheduling," Management Science, 34, 391–401,
1988.

[2] K. Anke, R Staudte and W. Dilger, Producing and improving
timetables by means of constraints and agents, Technical Report
WS-97-05, AAAI Press, Menlo Park, CA,pp. 142-147, 1997.

[3] D. Applegate, W. Cook, "A computational study of job shop
scheduling problem," ORSA Journal of Computing, 3149–156,
1991.

[4] M. E. Aydin, T.C. Fogarty, Teams of autonomous agents for job-
shop scheduling problems: An Experimental Study, Journal of
Intelligent Manufacturing, 15(4), (2004) 455–462.

[5] E. Balas, J.K. Lenstra, Vazacopoulos, "The One machine Problem
with Delayed Precedence Constraints and its use in Job Shop
Scheduling," Management Science, 41, 1, 94-109, 1995.

[6] E. Balas, A.Vazacopoulos, Guided local search with shifting
bottleneck for job shop scheduling. Management Science,
44(2):262–75, 1998.

[7] J Blazewicz, W Domschke, E. Pesch, The job shop scheduling
problem: conventional and new solution techniques. European
Journal of Operational Research, 93, 1–33, 1996.

[8] P. Burke and P. Prosser, The Distributed Asynchronous Scheduler,
in: Intelligent Scheduling, M.B. Morgan, ed., Morgan Kaufman
Publishers, Inc., San Francisco, pp. 309–339, 1994.

[9] J. Carlier, "The one-machine sequencing problem," European
Journal of Operational Research, 11, 42-47, 1982.

[10] S. Dauzere-Peres, J.B. Lasserre," A modified shifting bottleneck
procedure for job-shop scheduling," International Journal of
Production Research, 31, 923-932, 1993.

[11] M. Dell’Amico, Trubian M. Applying tabu-search to job-shop
scheduling problem.Annals of Operations Research, 41,231–52,
1993.

[12] E. Demirkol, S.V. Mehta, R. Uzsoy," A computational study of
shifting bottleneck procedures for shop scheduling, " J. Heuristics,
3, 111–137, 1997.

[13] U. Dorndorf, E. Pesch, Evolution based learning in a job shop
scheduling environment. Comput. Oper. Res., 22, 25–44, 1995.

[14] J. Ferber, (1999) Multi-agent systems: An introduction to
Distributed Artificial Intelligence. Addison Wesley, London.

[15] H. Fisher and D.L. Thompson, "Probabilistic learning
combinations of local job shop scheduling rules," In J. F. Muth, G.

L. Thompson (eds.), Industrial Scheduling, Prentice-Hall,
Englewood Cliffs, 1963.

[16] M.R. Garey, D.S. Johnson, "Computers and Intractability: A
Guide to the Theory of NP Completeness," San Francisco
Freeman, 1979.

[17] F. Glover, M. Laguna, Tabu search. Dordrecht: Kluwer Academic
Publishers; 1997.

[18] AS. Jain, S. Meeran, Deterministic job shop scheduling: past,
present and future. European Journal of Operational Research,
113, 390–434, 1999.

[19] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, "Recent
developments in deterministic sequencing and scheduling: a
survey" in M. A. H. Dempster, J.K. Lenstra and A.H.G. Rinnooy
Kan , Deterministic and Stochastic Scheduling, Reidel, Dordrecht,
1982.

[20] HD Matsuo, CJ Suh, RS Sullivan, A controlled search simulated
annealing method for general job shop scheduling problem.
Working Paper, 03-04-88, Department of Management, The
University of Texas at Austin, Austin, TX, 1988.

[21] G.B. McMahon and M. Florian, "On scheduling with ready times
and due dates to minimize maximum lateness,” Operations
Research, 23, 415-482, 1975.

[22] S. Mukherjee and A.K. Chatterjee, "On the representation of the
one machine sequencing problem, " Eur. J. Oper. Res,
doi:10.1016/j.ejor.2006.07.024.

[23] S. Murthy, “Synergy in Cooperating Agents: Designing
Manipulators from Task Specifications,” Ph.D. dissertation,
Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA, 1992.

[24] E. Nowicki, C. Smutnicki, A fast taboo search algorithm for the
job shop scheduling problem.Management Science, 42, 6, 797–
813, 1996.

[25] L. Schrage, "Obtaining optimal solutions to resource constrained
network scheduling problem," Unpublished manuscript 1971.

[26] M Sevkli, M. E. Aydin, Variable Neighbourhood Search for Job
Shop Scheduling Problems, Journal of software, V.1, N. 2, August
2006.

[27] W. Shen, Q. Hao, H. J. Yoon, D.H. Norrie, Applications of agent-
based systems in intelligent manufacturing:An updated review,
Advanced Engineering Informatics 20 (2006) 415–431.

 Amirkabir / MISC / Vol . 43 / No.1 / Spring 2011
15

[28] S.Talukdar, Asynchronous teams. Proceedings of the 4th
international symposium on expert systems applications to power
systems, LaTrobe university,Melbourne, Australia.

[29] A. Tharumarajah and R. Bemelman, Approaches and issues in
scheduling a distributed shop floor environment, Computers in
industry, 34, 95-109, 1997.

[30] R. Uzsoy and C.S. Wang, "Performance of decomposition
procedures for job shop scheduling problems with bottleneck
machines," Int. J. Prod. Res., 38, 1271–1286, 2000.

[31] PJM. Van Laarhoven, EHL Aarts, JK. Lenstra, Job shop
scheduling by simulated annealing. Operations Research , 40, 1,
113–125, 1992.

[32] H. Wenqi and Y. Aihua, "An improved shifting bottleneck
procedure for the job shop scheduling problem," Computer &
Operations Research, 31, pp. 2093-2110, 2004.

[33] M. Wooldridge, An introduction to multi-agent systems. John
Wiley & Sons, Ltd., Chichester, England. , 2002.

[34] C.S. Wu, D.C. Li, T.I. Tsai, "Applying the fuzzy ranking method
to the shifting bottleneck procedure to solve scheduling problems
of uncertainty," Int. J. Adv. Manuf. Technol., 31, 98–106, 2006.

[35] C.Y. Zhang, P. Li, Z. Guan, Y. Rao, A tabu search algorithm with
a new neighborhood structure for the job shop scheduling problem
Computers & Operations Research doi:10.1016/j.cor.2005.12.002.

[36] Z. D. Zhou, H. H. Wang, Y. P. Chen, W. Ai, S. K. Ong, J. Y. H.
Fuh and A. Y. C. Nee, A Multi-Agent-Based Agile Scheduling
Model for a Virtual Manufacturing Environment, Int. J Adv
Manuf. Technol., 21, 980–984, 2003.

