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1- INTRODUCTION
Networked control system (NCS) is a feedback control 
architecture wherein the sensors, controllers, and actuators 
are connected via a communication network. The advantages 
of NCSs such as low cost, simple installation, and 
maintenance have broadened their usage in many real-world 
applications from multi-agent to distributed control systems. 
However, the presence of communication links in the 
control loop makes analysis and design of NCSs challenging 
compared to the traditional point-to- point structures [1-3]. 
Main issues originate from data latency and dropout in the 
information exchange among system components through the 
communication medium.
Most of analyses  and the design methods for NCSs rely on 
the Lyapunov-Krasovskii Theorem [4]. H∞ techniques for 
NCSs with data delay and loss were developed in [5-7]. In 
[5], on the basis of the appropriate Lyapunov–Krasovskii 
functional, the H∞ stabilization conditions were derived 
for NCSs with norm-bounded parameter uncertainty in the 
presence of both delay and dropout. In [6], latency and loss 
of data were modeled by a random variable with Bernoulli 
distribution and controller design conditions were extracted; 
however, the presented approach is not applicable to design 
NCSs with long delays. In [7], a linear Markov chain was 
employed to model data loss, and H∞ controller was designed 
for NCSs in which the upper bound of the data dropout is one 
sampling time. 
In order to handle data latency and dropout in NCSs, state 
observer was utilized in [8-13]. In [8], the problem of 
designing an observer-based predictive controller for NCSs 
was investigated in two different cases without considering 
any delay in the forward channel. In the first case, a predictive 
observer located on the side of the plant estimates the states 

Corresponding author; Email: mahboobi@sut.ac.ir

of the system; then, the estimated states are sent through a 
communication channel to the controller. In the second 
case, the measured outputs experience network delay before 
arriving at the predictive observer and the predicted states are 
used in the controller. In [9], a H∞ observer for switched linear 
systems with time-varying delay and exogenous disturbances 
was designed. By using the state observer, a controller is 
developed to stabilize a time-delay switched system, the 
design conditions are formulated in terms of delay-dependent 
LMIs.
Networked predictive controllers were proposed in [10, 11] 
where a sequence of future control predictions is generated 
on the side of the controller. An algorithm was employed 
at the actuator node to choose the appropriate control input 
according to the delay occurring in the forward channel. 
In [12, 13], the methods of [10, 11] were improved using a 
controller with switching gains which are chosen according 
to different values of the delay. In the mentioned approaches, 
a switched Lyapunov function which varies with respect 
to different delay values in the communication channels 
was used. However, the observer was located on the plant 
side, and, thus, delayed estimates of states are used in the 
controller; furthermore, the observer gain in [12, 13] is 
constant for different delay values. 
In all the aforementioned methods, different delay values are 
supposed to have the same occurrence probabilities. In [14], 
using the information of delay occurrence probabilities in the 
synthesis procedure, a less conservative static controller was 
derived for NCSs; however, it was assumed that all the states 
of the controlled system are directly available. 
In this paper, first, NCS is defined as a switched system; 
then, based on the notion of switched Lyapunov function, 
a new approach is introduced to design a robust stabilizing 
controller. The delay in the communication network varies 
randomly from zero up to a known upper bound; moreover, 
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information about the probability distribution of varying 
delay is known. Differently from [12, 13], according to  each 
value of delay in the forward and feedback links, a quadratic 
term is incorporated in the energy function.  Furthermore, 
unlike [12, 13], in a more practical configuration, the 
observer is located in the side of the remote controller. Thus,  
the  non-delayed estimates of the states can  be used in the 
controller to compute the control effort. Moreover, as in [14], 
the occurrence probabilities of the delay values are taken 
into account to reduce conservatism of the design sufficient 
conditions. The controller and observer gains are determined 
by solving a set of computationally tractable linear matrix 
inequalities which can be derived with utilizing switched 
energy function. Robust stabilization of NCSs is ensured 
with the desired disturbance attenuation level ã . Simulation 
results demonstrate that the maximum allowable delay bound 
is increased by the proposed scheme compared to state-of-
the-art.
This paper is organized as follows. The problem is explained 
in section II. Section III presents the main results of the paper 
wherein procedures are presented to determine controller and 
observer gains, maximum allowable delays in forward and 
feedback channels, and minimum disturbance attenuation 
level. In section IV, two numerical examples are given to 
illustrate the applicability and efficiency of the proposed 
method. Finally,  Section V concludes the paper.

Notations: In this paper, R denotes real numbers set. The 
symbol * stands for the symmetric block in the symmetric 
matrices. I  is identity matrix with appropriate dimensions. 
The notation P 0> , (P 0)≥  means that P is real,  symmetry, 
and positive definite, (semi definite). {}  Prob .  means the 
occurrence probability of the event. The superscript T   stands 
for matrix transpose. The operator col{ }  constitutes a column 
vector composed of elements in the braces. [ )2 0,l ∞  denotes 
the space of square summable infinite vector sequences over 
[0, ∞).

2- Problem Formulation
A typical NCS is shown in Fig. 1, wherein the controller is 
located far from the actuator and the sensor. The sensor is 
time-driven and the observer, controller, and actuator are 
all event-driven. In the considered network, all the data are 
lumped together into one packet and transmitted at the same 
time (single packet transmission), where the sent packets are 
time stamped. In the controller and actuator side, the new 
data packet is always used and the old ones are discarded; i.e. 
when an old data packet arrives, it is dealt with as a packet 
loss. It is assumed that the upper bounds of channel-induced 
delays in  the both feedback and forward channels are known 
and indicated by 1N  and 2N .

Fig. 1. Structure of networked control system (NCS)

The output of Zero Order Hold (ZOH)  is updated between 
sampling instances. Control prediction generator (CPG) 
on the side of the controller generates a sequence of future 
control actions. Furthermore, network delay compensator 
(NDC) close to ZOH applies the appropriate control action 
to the plant according to the value of delay in the forward 
channel. 
The controlled plant is a linear time-invariant system and is 
described by the following discrete-time dynamical model:

( ) ( ) ( ) ( )1 cx k Ax k Bu k E kω+ = + +

( ) ( )y k Cx k=                                                                      (1)

( ) ( ) ( )cZ k Fx k Du k= +                    

where, ( ) nx k R∈ , ( ) m
cu k R∈ , ( ) lZ k R∈ , ( ) py k R∈

and ( ) qk Rω ∈  are the state, control input, controlled output, 
measured output, and disturbance input belonging to [ )2 0,l ∞ , 
respectively. A, B, E, C, F and D are the known and real 
matrices with appropriate dimensions. The pair (A, B) is 
controllable, and the pair (A, C) is observable.
The channel-induced delay in the forward channel is 
denoted by kd  and assumed to take finite values from the set 
{ }10,1, 2, , N… . To compensate the forward delay kd , CPG 
computes all the probable future control  actions as follows:

( ) ( ) ˆ|
kk d ku k k d K x k d− = −                                               (2)

which are sent to NDC, wherein regarding  the actual occurred 
,  kd an appropriate control action is taken to be applied to the 

plant:

( ) ( ) ˆ|
kk d ku k k d K x k d− = −                                           (3)

where
kdK  is the controller gain with an appropriate dimension 

and kd  is the computed delay for the control action in the 
forward channel. The probabilities of induced delays in the 
forward channel are denoted as follows: 

{ } 0Prob 0  ,     kd β= =
{ } 1 Prob 1 ,  kd β= =

 


  
{ }

11Prob  k Nd N β= =  .                                                            (4)
As Fig. 1 depicts, the observer is located next to the controller.  
The equation of the observer is as  follows::

( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ ˆ1
kc c cx k Ax k Bu k L y k y kτ+ = + + −

( ) ( ) ( )c k ky k y k Cx kτ τ= − = − ,                                        (5)

where 
k

Lτ  is the observer gain with an appropriate dimension, 
and kτ  is the network-induced delay in the feedback channel  
assumed to take values from the finite set, { }20,1,  2,  ,  N… . 
The occurrence probabilities of the network-induced delays 
in the feedback channels are as follows:

{ } 0Prob 0 ,   kτ α= =
{ } 1Prob 1 ,      kτ α= =  

 
{ }

22 .Prob k NNτ α= =                                                             (6)
Remark 1. The information of the statistical distribution 

of the network induced delay can be obtained by the 
experiments as reported in [15] and references therein. It is 
well known that less conservative results are expected to be 
achieved by using this approximate information compared to 
deterministic approaches [15].
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The observer outputs and inputs, i.e. ( )ˆcy k  and ( )ˆcu k ,  are 
computed as follows:
( )  ( )  ( ) ( )

20 1 2  ˆ    1    ˆ c Ny k C x k C x k C x k Nα α α= + − +…+ −

 ( )
2

0

              ,   
N

j j
j

C x kα τ
=

= −∑                                                     (7)

( )  ( )  ( )  ( )
1 10 0 1 1 1ˆ      1    c N Nu k K x k K x k K x k Nβ β β= + − +…+ −

           ( )
1

 
0

  ,
N

i i i
i

K x k dβ
=

= −∑                                                     (8)

with 
20 1 20,   1  , ,  N Nτ τ τ= = … =  and 

10 1 10,   1, ,    Nd d d N= = … = .
Now, the models of the plant (1) and the observer (5) can be 
rewritten as

( ) ( ) ( ) ( )1 ˆ
kd kx k Ax k BK x k d E kω+ = + − +

( ) ( )y k Cx k=

( ) ( ) ( )ˆ
kd kZ k Fx k DK x k d= + −                                                             (9)    

( ) ( )  ( )
1

0

ˆ  ˆ1  B     
N

i i i
i

x k A x k K x k dβ
=

+ = + −∑ +

             ( )  ( )
2

0

         
k

N

k j j j
j

L Cx k L C x kτ τ α τ
=

 
− − −  

 
∑

In what follows, after defining  new augmented state vector, 
the overall closed-loop system is formulated as a switched 
system. To this end, first, the binary stochastic variables  

 and jα   iβ are defined as follows, 

( ) 1                   
  ,

    0                     
k j

j

if
k

otherwise
τ τ

α
=

= 


( ) 1                   
   .      

    0                     
k i

i

if d d
k

otherwise
β

=
= 


It is supposed that ( )i kβ  and ( )j kα  are independent Bernoulli 
distributed white sequences. 
Note that 

( )
1

0

1,
N

i
i

kβ
=

=∑
( ){ } { } .  i k i iE k prob d dβ β= = =                                           (10) 

( )
2

0

1,                  
N

j
j

kα
=

=∑
( ){ } { }     . j k j jE k probα τ τ α= = =                                       (11)

  Hence, the closed-loop system (9) can be rewritten as follows

( ) ( ) ( )  ( )
1

0

1  
N

i i i
i

x k Ax k B k K x k dβ
=

+ = + −∑ ( )                  E kω+                     

( ) ( ) ( ) ( )
1

0

 ˆ
N

i i i
i

Z k Fx k k DK x k dβ
=

= + −∑                                                                            (12)

( ) ( ) ( ) ( ) ( ) ( )
1 2 2

0 0 0

ˆ  ˆ  ˆ ˆ1                                              
N N N

i i i j j j j j j
i j j

x k Ax k BK x k d k L Cx k L Cx kβ α τ α τ
= = =

+ = + − + − − −∑ ∑ ∑
( ) ( ) ( ) ( ) ( ) ( )

1 2 2

0 0 0

ˆ  ˆ  ˆ ˆ1                                              
N N N

i i i j j j j j j
i j j

x k Ax k BK x k d k L Cx k L Cx kβ α τ α τ
= = =

+ = + − + − − −∑ ∑ ∑( ) ( ) ( ) ( ) ( ) ( )
1 2 2

0 0 0

ˆ  ˆ  ˆ ˆ1                                              
N N N

i i i j j j j j j
i j j

x k Ax k BK x k d k L Cx k L Cx kβ α τ α τ
= = =

+ = + − + − − −∑ ∑ ∑  .                                                                      

Regarding the theory of switched systems, the closed-loop 
system described in (12) is rewritten as 

( ) ( ) ( ) ( )( )
1 2

0 0

1
N N

ij ij
i j

x k k A x k E kω
= =

+ = Ψ +∑∑
( ) ( ) ( ) ( )

1

0

                                  13
N

i i
i

Z k k x kβ π
=

=∑
   

                                                 (13)

where,  ( ) { }0,1ij kΨ ∈  is the switching function which depends 
on the occurrence of two stochastic variables ( )i kβ  and 

( )j kα .

	 ( ) 1                    , 
,

    0                                
k k

ij

if d i j
k

otherwise
τ= =

Ψ = 


For instance, if the network-induced delays take values 1 
in forward and feedback channels; then  ( )11 1kΨ =  and  

( ) 0 ij kΨ =   for  1,   1i j≠ ≠ . ijA  and ( )  x k are defined in what 
follows:

 

 

1 2

3 4

i

j

ijA
Λ Λ 

=  
Λ Λ  

•	 Case 1:  1 2N N>

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2 1 , 1 , , ,   , 1  ˆ ,ˆ ˆ, , , ˆx k col x k x k x k N x k x k x k N x k N= − … − − … − … −

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2 1 , 1 , , ,   , 1  ˆ ,ˆ ˆ, , , ˆx k col x k x k x k N x k x k x k N x k N= − … − − … − … −  and,

2

 

2 2

1

0
,

0
n N n

N n N n n

A

I
×

×

 
Λ =  

  
( )

( )

1

2 1

   

2
1

üüüü
,

0i

n in i n N i n

N n N n

BK× × −

× +

 
Λ =  

  
( )

( )

2

1 2

3
1

0          0
,         

0j

n jn j n N j n

N n N n

L C× × −

× +

 
Λ =  

  

 
1 1

4

        
,

    0N n N n n

A
I

ϕ

×

 
Λ =  

 
with

( )2 2 2 10 0 1 1 2 2             0N N n N N nL C L C L C L Cϕ α α α α × −
 = − … + 

 

1 10 0 1 1                N NBK BK BKβ β β … 

( )2 1
     0      0             0i l N n l in i l N i nF DKπ × × × −

 =  

( )1 2 10 N N n q

E
E

+ + ×

 
=  
  

•	 Case 2: 1 2N N<

( ) ( ) ( ) ( )2{ , 1 , , ,  x k col x k x k x k N= − … −

( ) ( ) ( ) ( )1 2 ,  1 , , , , }ˆ ˆ ˆ ˆx k x k x k N x k N− … − … −  and,

2

 

2 2

1

0
,

0
n N n

N n N n n

A

I
×

×

 
Λ =  

  
         

( ) ( )

( )

1 2 1

2 2

   

2
1

0        0      0

0i

n in i n N i n n N N n

N n N n

BK× × − × −

× +

 
Λ =  

  

( )

( )

2

2 2

3
1

  0              0
,       

0j

n jn j n N j n

N n N n

L C× × −

× +

 
Λ =  

  

 
2 2

4

             
 ,

       0N n N n n

A
I

ϕ

×

 
Λ =  

 
with,

2 20 0 1 1 2 2          N NL C L C L C L Cϕ α α α α = − … +   

( )1 1 2 10 0 1 1                         0N N n N N nBK BK BKβ β β × −
 … 
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    iπ = ( ) ( )2 1 2 1
         0  0    0   0l N n l in i l N i n l N N nF DK× × × − × −

 
 

( )1 2 10 N N n q

E
E

+ + ×

 
=  
  

•	 Case 3: 1 2N N N= =

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }  , 1 , , ,  ˆ 1 , , ˆ, ˆ x k col x k x k x k N x k x k x k N= − … − − … − 
                   ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }  , 1 , , ,  ˆ 1 , , ˆ, ˆ x k col x k x k x k N x k x k x k N= − … − − … −
and,

 

 

  

1

0
,           

0
n N n

N n Nn n

A

I
×

×

 
Λ =  

  

( )

( )

 

  

   –
2

1

 0     0
 ,

0i

n in i n N i n

N n N n

BK× ×

× +

 
Λ =  

  

( )

( )

 

  

–
3

1

     0         0
,          

0j

n jn j n N j n

N n N n

L C× ×

× +

 
Λ =  

  

  

4

                   
,

          0N n Nn n

A
I

ϕ

×

 
Λ =  

 
with,
ϕ = [ ]0 0 1 1 2 2                               N NL C L C L C L Cα α α α− …

 0 0 1 1             N NBK BK BKβ β β + … 
	

( ) 
    0       0            0i l N n l in i l N i nF DKπ × × × −

 =  

( )2 10 N n q

E
E

+ ×

 
=  
  

Remark 2. The novelty of the proposed structure for 
NCS is threefold. First, the observer is located nearby the 
controller, thus, unlike [12], the estimated states which are 
used in computation of the control signal do not  include any 
delay; i.e. feedback link latency is compensated. Second, 
unlike [12, 13], the observer gain is switched with respect 
to the delay value in the feedback channel. Finally, the 
significant distinction is that different delay values in the 
forward and feedback channels have their own occurrence 
probabilities. It is a more realistic assumption compared to 
that made in [12, 13]. 
So far, the closed-loop NCS, which includes the introduced 
switching controller (2) and the observer (5), has been 
formulated as a linear switched system (13). In the next 
section, a systematic procedure is derived to determine the 
controller and observer gains. Before proceeding, some 
preliminaries are presented.

 Definition 1. The closed-loop system (10) is said to 
be mean-square stable if for ( ) 0kω = , there exist 0ε >  
and ( )0,1  δ ∈ such that for all ( )0x  and ( )ˆ 0 nx R∈  the 
following inequality holds:

( )
( )

( )
( )

2 2

ˆ ˆ
0

.
0

kx k x
E E

x k x
εδ

         ≤      
         

                                            
(14)

                                     

Definition 2.  For a given real value 0γ > , system (10) 
has an H∞  disturbance attenuation level 0γ >  under zero-
initial condition if there exists a state feedback law ( )u k  such 
that for all nonzero ( )kω ,  iK and jL , the following condition 
is satisfied,

( ){ } ( ){ } ( )2 22

0 0

 .       15
k k

E Z k E k
∞ ∞

γ ω
= =

<∑ ∑                                              (15)

3- Design Method 
In this section, two procedures are developed to determine 
the gains of the proposed controller and the observer given 
in  (2) and (5), respectively. To this end, a novel criterion is 
introduced in Lemma 1 to check the stability and  performance 
of the switched system (13).

Lemma 1: For a given scalar 0γ > , the system (13) 
with the known controller and observer gains is mean-
square stable with H∞  disturbance attenuation level γ , 
if there exist symmetric positive definite matrices 

{ }1,     0,1, 2, ,ijP i N∈ …  and { }2  0,1, 2, ,j N∈ … , such that (16) 
holds  for all { }1, 0,1, 2, ,i n N∈ …   and { }2  , 0,1, 2, , ,j m N∈ …

  

 2    0
*

TT T
ij nm nmij nm nm ij ij ij i i i

T
nm nm

A P EA P A P
E P E I

β π π
γ

 ΨΨ −Ψ +
= < Ψ − 

Ω .         (16)

where,
( ){ }     ,      jij ij iE k β αΨ = Ψ =

{ } { }1 20,1, 2, , ,    0,1, 2, , ,       i N j N∈ … ∈ …

( ){ }       ,        nm nm n mE k β αΨ = Ψ =

{ } { }1 20,1, 2, , ,   0,1, 2, , ,      n N m N∈ … ∈ …

Proof. Stochastic switched Lyapunov function is chosen 
as follows

( )( ) ( ) ( ) ( ) ( )
1 2

0 0

,   17
N N

T
ij ij

i j

V x k k x k k P x k
= =

= Ψ∑∑                                 (17)

where ijP  are symmetric positive definite matrices. The 
difference of ( )( ),   V x k k along the trajectory of the switched 
system (13) is given by  

( )( ) ( )( )1 , 1 ,üüüü∆ = + + − =

( ) ( ) ( )
1 2

0 0

      1 1  1  
N N

T
ij ij

i j

x k k P x k
= =

+ Ψ + +∑∑       

( ) ( ) ( )
1 2

 
0 0

         .       
N N

T
ij ij

i j

x k k P x k
= =

− Ψ∑∑
Without a loss of generality, it can be assumed that

( ) ( )  1ij ijk kΨ + = Ψ , thus the above relation can be rewritten 
as follows, 

( ) ( ) ( )
1 2

0 0

1 1
N N

T
nm nm

n m

V x k k P x k
= =

∆ = + Ψ +∑∑

( ) ( ) ( ) ( )
1 2

0 0

         .              18  
N N

T
ij ij

i j

x k k P x k
= =

− Ψ∑∑                                       (18)

Note that  in (18),  ( )nm kΨ  can be equal to ( )ij kΨ . 

To ensure the stability and the H∞  performance, 
simultaneously; the following inequality must hold 

( ) ( ) ( ) ( ){ }2 0.T TE V Z k Z k k kγ ω ω∆ + − <                          (19)

With regards to (13) and (18), the following relations are 
obtained:

( ) ( ) ( ) ( ){ } ( ) ( )( )2 .
TT T

ijE V Z k Z k k k A x k E kγ ω ω ω∆ + − = +

( ) ( )( ) ( ) ( )  . T
nm nm ij ij ijP A x k E k x k P x kωΨ + − Ψ +
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( ) ( ) ( ) ( ) ( )
( )

( )
( )

2  
T

T T T
i i i

x k x k
x k x k k k

k k
β π π γ ω ω

ω ω
   

+ − =    
   

Ω

Thus, the system (13) is H∞  stable, if (16) is satisfied. ■   
Remark 3. Differently from [12, 13], the switched 

multiple Lyapunov function in (17) includes distinct quadratic 
terms corresponding to each delay value in the feedback and 
forward links. Moreover,   represents the stochastic nature of 
the switching function which is helpful in derivation of robust 
stability measure.
Lemma 1 presents sufficient condition for stability analysis 
of the NCS. However, this condition is nonlinear with respect 
to the controller and observer gains. Hence, it cannot be used 
to obtain   s and  s, efficiently.  In what follows, Lemma 1 
is utilized to derive a systematic approach to compute the 
mentioned parameters by solving computationally amenable 
LMIs.

Theorem 1. the system (13) with controller and 
observer gains iK  and jL  is mean-square  H∞  stable with 
a given disturbance attenuation level γ , If there exist 
symmetric positive definite matrices  ijP , { }10,1, 2, ,i N∈ …  
and { }2 0,1, 2, ,j N∈ … , for all { }1, 0,1, 2, ,i n N∈ …  and 

{ }2  , 0,1, 2, ,j m N∈ … , 

( )

 

2  

 

0             
*                0  0

0* * 2
 

* * *

T T
ij ij ij nm i i

T
nm

nm nm

i

P A
I E

P I
I

β π
γ

β

 
 −Ψ Ψ 
 − Ψ <
 

Ψ − 
 − 

.                                               (20)

Proof. Utilizing the Schur complement, (16) can be 
modified as follows:

( )

 

2  

 1

0             
*                0  0

0* *
 

* * *

T T
ij ij ij nm i i

T
nm

nm nm

i

P A
I E

P
I

β π
γ

β

−

 
 
−Ψ Ψ 
 − Ψ < 
 −Ψ
 

−  

                                 (21)

On the other hand, ( ) ( )1 1 0nm nm nmI P P I P− −− − ≥ , is equivalent to 
1 2nm nmP P I−− ≤ − .                                                                     (22)

Combining (21) with (22) yields (20). ■
Instead of using (22), an alternative method to obtain 
LMI conditions from (21) is to replace 1

nmP−  with  nmW . The 
constraint  nm nmP W I=  is imposed by minimizing the trace of 
 nm nmP W . The result is summarized in Theorem 2. 

Theorem 2.  The system (13) is mean-square  H∞  stable 
with a given disturbance attenuation level  γ  if the controller 
and observer gains iK  and jL  are determined by solving the 
following optimization problem for all { }1, 0,1, 2, ,i n N∈ …  
and { }2 ,  0,1, 2, ,j m N∈ … , with variable  ,nmP   nmW  , iK  and 

jL ,
Minimize       Trace [ ]  nm nmP W 	           	                       (23) 

Subject to:                                                                                               

0nm

nm

P I
I W

 
≥ 

 
  

 

2  

 

0       
*       0 0

0* *
  

* * *

T T
ij ij ij nm i i

T
nm

nm nm

i

P A
I E

W
I

β π
γ

β

 
 −Ψ Ψ 
 − Ψ <
 

−Ψ 
 − 

Remark 4. The observer and controller gains can be 
obtained by LMI feasibility problem (22) or alternatively 
by solving minimization problem (23) which leads to less 
conservative result. The second approach it needs more 
offline computation compared to (22).

4- Simulation Results
Simulation results are presented to demonstrate the merits 
of the proposed approach. To solve the LMI problems in 
Theorems 1 and 2, the LMI Toolbox of Matlab® is utilized 
[16]. 
In example 1, the results obtained by the proposed method are 
compared with the ones of [11] and [12]. Maximum allowable 
delay bound (MADB) which is the maximum delay value that 
retains the stability of the system is used for the evaluation of 
methods. Simulation results verify that conservativeness of 
the design conditions is notably decreased by the suggested 
scheme compared to the rival ones in [11] and [12]. Moreover, 
the  time response of simulation outcomes is contrasted with 
the ones of [12].

Example 1. Consider the following system [12]: 
1.01 0.271 0.4880

,                 0.4820 0.1 0.24
0.0020 0.3681 0.7070

A
− 

 =  
  

5 5
1 2 3

3 2 ,     
4 3 1

5 4
B C

 
  = − =       

0.02 0 0.03
,   0.01 ,

0.04 0.01 0.01
F E I 
= = 
 

                                    (23)

which is controlled over a network. For the same disturbance 
attenuation level 0.025γ = , the obtained MADB  by Theorem 
2 is 10 while the MADBs attained by the methods of [11] and 
[12] are 3 and 6, respectively. Table 1 which summarizes the 
results obtained by different approaches shows the advantages 
of the proposed design method.

Table 1. MADBs from different approaches
Method [11] [12] Proposed Method
MADB 3 6 10

Furthermore, a simulation scenario is executed by the 
proposed controller. It is assumed that data is transmitted over 
a network in which different delays have uniform occurrence 
probabilities with a maximum delay that is equal to 140 
msec. Choosing sampling interval 35 msec yields delay 
upper bounds 1 2 4N N= = . Delay occurrence probabilities 
are assumed to be  0.2iβ = , 0.2jα = , for { } , 0,1, 2,3, 4i j∈ . 
The disturbance input is taken as follows

( )
[ ]1 1  1 ,          1 3

1 1 1    ,                 3

T

T

k
k

k
k k k

ω

 ≤ <


=   ≤                        

                (24)
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The controller and observer gains for desired disturbance 
attenuation level 0.02γ =   computed by solving (23) are 
shown in the following: 

0

0.0038 0.0122 0.0451
0.0154 0.0084 0.0552

K
− − 

=  − − 

,           

1

0.0014 0.0117 0.0221
0.0124 0.0087 0.0584

K
− − 

=  − 

2

0.0075 0.0165 0.018
0.0112 0.0043 0.0245

K
− − − 

=  − 

,               

3

0.0098 0.0125 0.0138
0.0074 0.0075 0.0293

K
− − − 

=  − 

4

0.0122 0.0113 0.0121
0.0067 0.0063 0.0341

K
− − − 

=  − 

0

0.2831 0.3210
0.0092 0.112

0.1852 0.0395
L

− 
 = − 
 − 

,                  

1

0.2232 0.2745
0.0073 0.0873

0.1962 0.0326
L

− 
 = − 
 − 

2

0.1972 0.2531
0.0012 0.1234
0.2345 0.0274

L
− 
 =  
 − 

,                 

3

0.1713 0.2146
0.0045 0.1324
0.2571 0.0215

L
− 
 =  
 − 

4

0.1523 0.1826
0.0081 0.1401
0.2772 0.0198

L
− 
 =  
 − 

Fig. 2-4  depict the outputs, control inputs and estimated states, 
respectively, with initial condition ( ) [ ]0 0.1 0.1 0.1Tx =  . In 
the proposed method, using variable observer gains and non-
delayed estimated states lead to a remarkable improvement 
compared to [12].

Fig. 2. Outputs of the system in  Example 1

Fig. 3. Control inputs of the system in  Example 1.

Fig. 4. States of the observer in  Example 1

To demonstrate the real-world applicability of the proposed 
method, networked control of dc servo motor is simulated 
in example 2. The considered model belongs to a test rig 
comprising of a DC servo system depicted in Fig. 5 and a 
remote controller,  connected via the Internet [13].

Fig. 5. DC servo plant controlled over the Internet [13]
       
Example 2: Consider the dynamic of DC servo motor as 
presented in [13]:

11.12 0.213 0.335
,        01 0 0

00 1 0
A B

−   
  = =   
     

,         

[ ]0.0541 0.1150 0.0001 ,C =

[ ]0.0500 0.1000 0.0005 ,              D =

0.01E I=                                                                            (25)

which is controlled over the Internet. It is assumed that the 
sampling period is 0.04s and the upper bounds of network-
induced delays in feedback and forward channels are both 
0.12s (maximum delay is considered to be 3 samples). 
Different delay values have their own occurrence probabilities 
as: 0 0.2α = , 1 0.2α = , 2 0.3α = , 3 0.3α = , 0 0.3β = , 1 0.3β = , 
and 2 0.4β = . Disturbance input is as (24).  The controller and 
observer gains for disturbance attenuation level 0.095γ =  are 
computed by solving (23) and are presented in the following. 

[ ]0 0.0516 0.0085 0.0321K = − − ,           

[ ]1 0.0423 0.0112 0.0375K = − − −

[ ]2 0.0401 0.0152 0.0346K = − − −                           

[ ]T0 3.5122 3.2231 5.1315L = , 

[ ]T1L 3.8891 3.5218 5.7182= ,

[ ]T2L 4.5108 2.8123 5.2821= ,  

[ ]T3L 4.9521 2.4591 4.7213 .=               (26)



A. Farnam, R. Mahboobi Esfanjani , AUT J. Model. Simul. Eng., 50(1)(2018)23-30, DOI: 10.22060/miscj.2017.12188.5013

29

Simulation results in Fig. 6 and Fig. 7 illustrate the efficiency 
of the proposed method. It should be noted that in [13] similar 
results are reported for maximum delay equal to 3.

Fig. 6. Output of the system in Example 2

Fig. 7. Control input of the system in Example 2

5- Conclusion
In this paper, in the framework of switched systems theory, 
a networked control system was designed. Here, the both 
feedback and forward channels suffer random delays with 
the known probability. To increase the maximum allowable 
delay bound, a remote observer was located on the side of 
the controller to import non-delayed estimates of states to 
the controller. Moreover, the both controller and observer 
gains can vary according to the value of delay. The less 
conservativeness of the proposed method was verified by 
simulations. Since the design criterion relies on the chosen 
switched Lyapunov function, by using more comprehensive 
energy function, less conservative sufficient conditions can 
be obtained in the future works.
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