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1- Introduction
The advent of micro-electro mechanical system (MEMS)-
based inertial measurement units (IMUs) creates an 
opportunity to apply inertial navigation into a wide variety of 
new applications in both civil and military fields. However, the 
low-cost MEMS inertial sensors are affected by considerable 
uncertainties comprising of stochastic noises and short-term 
and long-term error sources [1]. Hence, the stand-alone use 
of MEMS IMUs in the strap-down inertial navigation system 
(SINS) can deliver kilometer-level positioning error after 
several seconds. In many applications, the SINS will be 
integrated with an aiding system such as global positioning 
system (GPS) to achieve a higher degree of accuracy.
In the SINS, the IMU measurements are provided in the body 
frame and the navigation parameters are calculated in the 
navigation frame. The measurements are transformed from 
the body frame to the navigation frame through direction 
cosine matrix (DCM). To limit the navigation error, it is 
very important to accurately determine the DCM matrix. 
The process of computing the true value of the DCM matrix 
is known as SINS alignment [2]. The alignment procedure 
contains two steps, namely, initial alignment and in-motion 
alignment. In the initial alignment, initialization of the SINS 
states will be completed prior to vehicle motion. However, 
due to poor initialization and cumulative IMU errors, initial 
alignment is  insufficient to achieve the required navigation 
accuracy. Therefore, the SINS are often required to be re-
aligned during the vehicle motion [3]. This is so-called in-
motion alignment.
Regarding integrated navigation algorithms, several studies  
have been conducted in the literature. Using artificial neural 
network (ANN), Kaygisiz et al. enhanced the navigation 
accuracy and performance of the INS/GPS system [4]. Hao 
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et al. presented a particle filter for SINS in-motion alignment 
with a large initial attitude error [5]. Wang et al. studied 
observability analysis for in-motion alignment of INS/GPS 
during different maneuvers based on perturbation model 
[6]. They showed that yaw-change or acceleration-change 
enhances the observability of misalignment angles. Stancic 
and Graovac proposed adaptive error damping scheme for 
integration of SINS and GPS [7]. A nonlinear sliding-mode 
observer (SMO) has been proposed for low-cost attitude-
heading reference systems (AHRS) in [8]. Using infinite 
impulse response, (IIR) digital low-pass filter, a new algorithm 
for initial alignment of marine SINS has been developed in 
[9]. Li et al. presented a novel scheme for Doppler Velocity 
Log (DVL)-aided SINS alignment using unscented Kalman 
filter (UKF) [10]. Adaptive filtering approach has been 
recommended in [11] for the purpose of improving the 
accuracy of in-motion alignment. Musavi and Keighobadi 
proposed an adaptive fuzzy neuro-observer to enhance the 
performance of integrated INS/GPS positioning systems 
[12]. Magnetic calibration of strap-down magnetometers 
for the INS heading angle correction has been conducted 
in [13]. According to covariance matching techniques, 
adaptive unscented Kalman filter has been presented for INS/
GPS integration in [14]. Nourmohamadi and Keighobadi 
developed direct decentralized integration scheme for low-
cost INS/GPS system in which QR-factorized cubature 
Kalman filter has been used as the state estimation algorithm 
[15]. 
Some researches have been dedicated to integrated navigation 
systems. However, there are crucial factors that may lead to 
some restrictions in their practical applications. For example, 
navigation accuracy, costs, computational cost and real-
time implementation play a key role in the evaluation of 
navigation systems. When the navigation process runs in 
short time intervals, the SINS/GPS gives accurate and reliable 
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information. However, the accuracy of the low-cost SINS/
GPS is considerably declined with respect to the navigation 
time. In the practical application, in-motion alignment is very 
necessary to improve the long-term performance of the SINS/
GPS system. In the paper, an applied algorithm is proposed 
for in-run estimation of misalignment error. Accordingly, 
in-motion alignment is carried out simultaneously with 
the estimation of general navigation parameters, namely, 
orientation, position and velocity components. Therefore, 
online correction of the DCM matrix and the SINS orientation 
are provided. Furthermore, vertical channel instability which 
can impress the other navigation states in the horizontal plane 
is an important challenge in low-cost SINS/GPS systems. 
Considering this fact, in this paper, decomposed SINS error 
model is developed and two-step integration scheme is 
presented for the SINS/GPS system. In summary, the main 
contributions of the paper are:

•	 enhancing the orientation estimation accuracy in SINS/
GPS system through online estimation of misalignment 
error,

•	developing new integration scheme based on 
decomposed SINS error dynamics to prevent the 
instability effects of the vertical channel on the overall 
navigation accuracy.

2- General Equations in SINS
Fig.1 shows the main reference coordinate systems used in 
this paper, that comprises of inertial frame (i-frame), Earth-
fixed frame (e-frame), navigation frame (n-frame) and body 
frame (b-frame). In the paper, the n-frame is the local level 
navigation coordinates with north-east-down (NED) geodetic 
axes. Basic inertial navigation equations can be divided into 
three parts, namely, position dynamics, velocity dynamics, 
and orientation dynamics.

Fig. 1. Reference coordinates frames in the inertial navigation 
systems [15]

Dynamics equation of the SINS position is summarized as 
follows. 
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where, L, l and h are the position coordinates (latitude, 
longitude and height) and Nv , Ev  and Dv  are the velocity 

coordinates in the n-frame. NR  and ER  stand for meridian 
radii of curvature and transverse radii of curvature, 
respectively. The velocity equation of the SINS is expressed 
as follows in vector form [16]. 
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where, nv  is the velocity vector in the n-frame, ng  is the 
gravitational acceleration in the n-frame and bf  is the 
specific force measured by the accelerometer in the b-frame. 
The Earth rate, n

ieω , and the rate of the n-frame relative to the 
e-frame, n

enω , are expressed as follows.
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where, eω  is the magnitude of the Earth rate. The orientation 
coordinates are defined in the paper by the roll (ϕ , about 
x-axis), pitch (θ , about y-axis) and yaw (ψ , about z-axis) 
angles known as Euler angles. Considering the sequence of 
z-y-x rotations, the DCM matrix between the b-frame and the 
n-frame is expressed as follows [17]. 
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where, C and S denote cosine and sine functions, respectively. 
The orientation equation of the SINS can be expressed as in 
the following matrix form known as Poisson equation [18]. 
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b
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where, b
nbΩ  is a skew-symmetric matrix representing the rate 

of the b-frame relative to the n-frame. In low-cost SINS, b
nbΩ  

can be approximated into b
ibΩ  which is measured by the gyro 

in the b-frame. The equations (1), (2) and (5) are the basic 
SINS equations. Using these equations with the given initial 
states and the IMU measurements, the navigation states are 
estimated. 

3- Sins Error Model
The main source of the navigation error in the SINS arises 
from the inaccurate measurements of the MEMS IMU. The 
accelerations measured in the b-frame are neither  accurate 
nor are they properly transformed into the n-frame. This is due 
to the erroneous calculation of the orientation and the DCM 
matrix. Mutually, the error in the calculations of navigation 
states will be propagated into the calculation of rotation 
rates, n

ieω  and n
enω . The standard form of the SINS error 

model can be organized by three batch dynamics equations, 
including position error, velocity error, and misalignment 
error equations. 

3- 1- Position Error Dynamics
The linearized position error dynamics can be obtained by 
perturbing the dynamics equation of the geodetic positions. 
The position in the n-frame is expressed by curvilinear 
coordinates as [ ]TL l h=r . Since the position dynamics 
is a function of position and velocity, the linear differential 
equation of the position error is derived as follows.
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where δ r  and nδv  are the position and velocity error vectors, 
respectively.
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Note that, (^) characterizes the estimated values. Using (1), 
we can rewrite (6) as follows:
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The above equation describes the position error dynamics of 
the SINS. Note that, the time step between the measurement 
updates is very small and during this short period, the 
assumption of linear propagation shall be taken to model the 
SINS error. 

3- 2- Velocity Error Dynamics
Referring to (2), the estimated velocity is assumed to be 
propagated in accordance with:
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The estimated DCM matrix, ˆ n

bC , is written in terms of 
the true DCM matrix, n

bC , and the misalignment errors as 
follows [16].
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where I is an identity matrix and E represents misalignment 
matrix constructed by the misalignment angles, δα , δβ  and 
δγ .
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Perturbing (9) and, then, replacing (2) and (10), we can extract 
the following equation after ignoring the error product terms.
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where nf  is the specific force in the n-frame and the 
accelerometer error nδ f  has been approximated by 
accelerometer bias nB . The term (2 )n n

ie enδω δω+  is obtained 
by calculating the first differential variation of the vector 
(2 )n n

ie enω ω+ . Moreover, the following equation is considered 
for the gravity variation with respect to the altitude.
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where 0g  is the equatorial gravity and g  is the gravity at 
the altitude of h. The vector nδ g  is obtained by the first 
differential variation of (13). After some mathematical 
simplifications, the following equations can be derived for 
the velocity error dynamics.
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where Nf , Ef  and Df  represent the specific force coordinates 
in the n-frame and NB , EB  and DB  are the accelerometer 
bias coordinates in the n-frame.

3- 3- Misalignment Error Dynamics
Referring to (5), we express the estimated version of the 
orientation dynamics in accordance with the following 
equation.
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Replacing (17) in the derivative of (10) and then ignoring the 
error product terms results in:
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The vector form of (18) is expressed as follows by using the 
properties of the DCM matrix.
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inδω , we start with ˆˆ ˆb b n

in n inω ω= C , which can 
be expanded into: 
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Ignoring the error product term in (20) results in:
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Inserting (21) into (19) yields: 
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Note that the gyro error has been approximated into gyro 
drift, nD . The term n

inδω  is obtained by calculating the 
first differential variation of the vector n

inω . After some 
mathematical simplifications, the following equations are 
derived for the misalignment error dynamics.
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In the above equations, ND , ED  and DD  represent the gyro 
drift coordinates in the n-frame.

3- 4- Deriving Orientation Error
This section deals with developing a relationship between the 
orientation error, i.e. roll, pitch, and yaw angle error, and the 
misalignment error. Let us begin with the equation that relates 
the estimated body-to-navigation frame DCM matrix to the 
true one.

n n
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The matrix n
bC  is given in (4). It is assumed that (4) is held 

for both estimated and true values of the DCM matrix. For the 
estimated one, the corresponding roll, pitch, and yaw angles 
are expressed in terms of their true values plus an error as 
follows.

ˆˆ ˆ, ,ϕ ϕ δϕ θ θ δθ ψ ψ δψ= + = + = +                          (25)

The objective is to relate the above error angles with the 
misalignment error. This is accomplished by selecting 
elements in the estimated DCM matrix, expanding them 
into terms of the trigonometric relationships for the sums of 
angles, and equating those expressions to their corresponding 
terms from the matrix multiplication given in (24). For 
example, we begin with the element (3, 1) in the matrix ˆ n

bC ,
ˆsin cos cos cos sin sinθ δβ θ ψ δα θ ψ θ− = − −                 (26)

Substituting ˆsinθ  with sin( )θ δθ+  and expanding it in terms 
of the trigonometric relationships yield:
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By inserting (27) into (26), the following relationship is 
derived for δθ .
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Continuing in a similar procedure for elements (3, 2) and (1, 1) 
in the matrix ˆ n
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Therefore, the orientation error vector is calculated from the 
misalignment error as follows.
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Finally, the estimated orientation is corrected by subtracting 
the orientation error from the estimated orientation based on 
(25).

3- 5- Sensor Error Model
Inertial sensor errors deteriorate the overall navigation 
accuracy in the SINS. Although accelerometer errors 
have minor effects on the SINS performance,  gyro errors 
usually play a crucial role. These errors should be modeled 
stochastically and included in the SINS error model. Here, 
accelerometer bias and gyro drift have been considered as 
the inertial sensor errors. The model of IMU error is adopted 
under the assumption that the gyro drift can be approximated 
by a first-order Gauss-Markov process, and the accelerometer 
bias by a constant value. Therefore, the gyro drift and the 
accelerometer bias are modeled as follows. 

i i

i

N , E , D

N , E , D

D D 2 w( t ) , i
B 0 , i

β σ β= − + =

= =						            (31)

where β  and σ  are the correlation coefficient and the 
standard deviation of the sensor measurement, respectively, 
and ( )w t  is a Gaussian white noise with unity power spectral 
density [19]. 

4- Integrated SINS/GPS Navigation
Table 1 shows a brief comparison between the SINS and the 
GPS characteristics. It can be obviously inferred that there are 
very complementary characteristics between the SINS and 
the GPS performance. The objective is to develop an applied 
mechanization for the integration between the SINS and the 
GPS outputs to take advantage of their characteristics.

Table 1. Comparison between the SINS and the GPS 
characteristics

properties SINS GPS
Sampling rate high (1-1000 Hz) low (1-20 Hz)

Short-term accuracy high high
Long-term accuracy low high

Independence self-contained depended 
Continuous naviga-

tion yes no

Here, considering vertical channel instability effects and in-
motion alignment, a new scheme for SINS/GPS integration 
is developed. Misalignment error is estimated during the 
navigation process and in-motion alignment is achieved. 
Regarding vertical channel instability, decomposed error 
model is presented. In order to enhance the long-term 
performance of the integrated SINS/GPS, decomposed SINS 
error dynamics are applied in the filtering process instead of 
the standard SINS error model. 

4- 1- Decomposed SINS Error Dynamics
This section deals with the vertical channel instability and its 
effects on the SINS performance. It can be revealed that the 
source of this instability is the gravity variation with respect 
to the altitude. The equation (32) states a typical equation for 
vertical channel error model (note that (32) is a simplification 
of (16)):

2gh h cte
R h

δ δ− =
+

				         (32)
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It can be inferred from the solution of (32) that the vertical 
channel error exponentially increases  over time. In other 
words, the positive feedback in (32) due to the errors in the 
calculation of the gravity vector leads to an instability in the 
vertical channel. Obviously, the vertical channel instability 
not only affects the vertical components but also impresses 
on the estimation accuracy of other navigation states in the 
horizontal channels. In order to prevent the effect of vertical 
channel instability on the estimation of the other navigation 
states, the SINS error model is decomposed into two parts, 
including vertical channel and horizontal plane.
The decomposed error model of the SINS is obtained using 
the following state vectors. 
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A
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The linearized SINS error dynamics given in (8), (14) – (16) 
and (23) are derived with the assumption of neglecting the 
error product terms. Furthermore, the calculation of the 
matrices HA  and VA  has been done with the assumption of 
neglecting the coupling terms in the SINS error model. The 
coupling terms are those of the vertical state vector, Vx , in the 
horizontal plane dynamics and those of the horizontal state 
vector, Hx , in the vertical channel dynamics. Note that, in the 
low-cost SINS/GPS system in which MEMS-grade IMU is 
applied to provide inertial measurements, the coupling terms 
between the vertical channel and the horizontal plane are 
negligible in comparison with the sensors’ noises, biases, and 
other stochastic errors.
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where Hx  contains the horizontal plane components and 
Vx  contains the vertical channel components of the SINS 

error states. Finally, the following decomposed dynamics are 
defined for the SINS error model.

H H H

V V V

=

=

x A x
x A x 					           

(34)

The matrices HA  and VA  can be obtained from the SINS 
error dynamics given in (8), (14) – (16), (23) and (31) as 
follows.
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4- 2- Integration Scheme
In this section, fifteen-state SINS/GPS integration scheme is 
developed based on the decomposed SINS error dynamics. 
The achieved dynamical system contains fifteen states, 
namely, misalignment errors, velocity errors, position errors, 
accelerometer biases and gyro drifts. Measurement system 
contains GPS position, velocity, and heading angle. Based 
on the decomposed SINS error’s dynamics, the system 
differential equations in continuous-time form are given as 
follows.

H H H H H

V V V V V

= +

= +

x A x G u
x A x G u

			                       (37)

where G is a design matrix and u represents the system noise 
vector assumed to be white, Gaussian and zero-mean. Since 
the SINS is implemented with high-rate sampled data, (37) is 
transformed into its discrete-time form:

H H H H
k 1 k k k
V V V V
k 1 k k k

Φ

Φ
+

+

= +

= +

x x w

x x w
				          (38)

where kΦ  is the state transition matrix, and kw  is the driven 
response at time 1kt +  due to the system noise during the time 
interval ( kt , 1kt + ). Since a white sequence is a sequence of 
zero-mean random variables which are uncorrelated time-
wise, the covariance matrix associated with kw  is obtained 
as follows.

.

.

.

.
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Q
w w 			         (39)

The state transition matrices can be calculated by the 
following numerical approximation. 

k

k

H H H

V V V

exp( t ) I t

exp( t ) I t

Φ

Φ

= ∆ ≈ + ∆

= ∆ ≈ + ∆

A A

A A
			        (40)

where t∆  is the sampling time. The measurement equation is 
defined in two parts as follows. 

H H H H
k k k k
V V V V
k k k k

= +

= +

z

z

H x e

H x e
				        (41)

where ke  stands for the measurement noise with the following 
covariance matrix.
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The measurement vectors Hz  and Vz are constructed based 
on the difference between the GPS and SINS outputs in 
calculation of position vector, velocity vector, and heading 
angle. 
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The observation matrices HH  and VH  are obtained as 
follows. 
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Kalman filter is applied as the estimation algorithm for 
the integration of the measurement data and the dynamical 
system. Kalman filter is implemented in two steps known as 
time update and measurement update [20]. Time update is 
the prediction stage in which the predicted value of the state 
vector, ˆk

−x , and the error covariance, k
−P , are provided.

T
k k 1 k 1 k 1 k 1

k k 1 k 1ˆ
Φ Φ

Φ

−
− − − −

−
− −

= +

=

P P Q

x x
				          (46)

Measurement update is the correction stage in which Kalman 
gain, i.e. kK , is computed first, and then the state vector and 
the error covariance are updated as follows.
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In order to integrate the SINS with the GPS, two independent 
Kalman filters are constructed for the decomposed SINS 
error dynamics. Therefore, the integration in the horizontal 
plane is entirely separated from that of the vertical channel. 
Using the estimated misalignment errors, the DCM matrix 
can be corrected by reformulating  (10) as follows. 

[ ]n n
b b

ˆ= +C I E C 					          (48)

Therefore, in-motion alignment is carried out during the 
navigation process. The accurate orientation is obtained from 
the corrected DCM matrix. Using the estimated position 
and velocity errors, the SINS position and velocity are 
corrected. The main advantage of the proposed approach 
is that the vertical channel instability effects cannot lead to 
the degradation in the estimation accuracy of the navigation 
states in the horizontal plane. Consequently, the long-term 
performance of the low-cost SINS/GPS navigation will be 
enhanced.

5- Experimental Results and Discussion
In order to assess the long-term performance of the proposed 
integration scheme of the low-cost SINS/GPS system, the 
airborne test has been conducted. MEMS-grade ADIS-16407 
IMU has been used to provide the inertial measurements, that 
they are angular rates and specific forces. Garmin-35 GPS 
receiver has been used to produce the measurement data 
for the integrated navigation system. The main statistical 
specifications of the inertial sensors in ADIS-16407 IMU are 
given in Table 2. 

Table 2. Statistical specifications of the Inertial sensors in 
ADIS-16407.

parameter Gyro Accelerometer
Initial bias error (1σ) 3 deg/sec 50 mg

In-run bias stability (1σ) 0.007 deg/sec 0.2 mg
Random walk (1σ) 1.9 deg/√hr 0.2 m/sec/√hr

Dynamic range ±300 deg/sec ±18 g

In the flight test, the proposed SINS/GPS system was installed 
beside a precise Vitans integrated navigation system. The 
highly accurate attitude data provided from Vitans system are 
considered as the reference values for the attitude accuracy 
assessment of the proposed algorithm. The raw IMU 
measurements are acquired at a sampling rate of 50 Hz. The 
SINS orientation, velocity, and position are delivered at the 
same rate but corrected by the GPS data at a rate of 1 Hz in 
the estimation filter. The error between the SINS and GPS 
position, velocity and heading angle are used to construct 
the measurement vector of the estimation algorithm. Fig. 
2 represents the reference geographical latitude-longitude 
trajectory of the vehicle during the flight test. The test has 
been executed for approximately 1200 seconds along a 
trajectory with wide-range dynamic maneuvers. In Fig. 2, the 
estimated latitude-longitude trajectory of the vehicle has been 
compared with that of the GPS system as the true reference 
trajectory.
To legitimize the assessment of the presented SINS/GPS 
algorithm, the enhanced estimation results of the proposed 
two-phase integration scheme are compared with those of the 
conventional integration scheme. The conventional scheme 
contains a central Kalman filter algorithm implemented on 
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the SINS dynamics without separating the vertical channel 
states from those in the horizontal plane. In the conventional 
integration scheme, basic nonlinear dynamics of the SINS 
are used in the estimation process. Extended Kalman filter 
(EKF) is used as the state estimation filter in the integration 
process of the conventional integration scheme. Navigation 
states of the conventional integration contain position, 
velocity and orientation components. Unlike the proposed 
integration scheme, the conventional one does not use 
misalignment states and in-motion alignment. Figs. 3 and 4 
show the estimation results of the attitude and heading angles 
through both the conventional and the proposed scheme. 
The estimated attitude has been compared with those of the 
accurate Vitans system and the estimated heading angle with 
that of the GPS system. According to Figs. 3 and 4, through 
the proposed integration scheme, the bias and drift terms of 
the MEMS-grade inertial sensors are properly compensated. 
The misalignment errors and the associated orientation 
errors are obtained appropriately. Figs. 3 and 4 depict the 
proposed algorithm results in a better orientation estimation 
in comparison with the conventional integration scheme. In 
Figs. 5 and 6, the estimated position and velocity are compared 

with respect to the GPS data as the reference values. Figs. 
5 and 6 demonstrate the better performance of the proposed 
algorithm in the position and velocity estimation.
For a better evaluation, the statistical mean and standard 
deviation values of the estimation errors corresponding to 
both the conventional and the proposed integration schemes 
are displayed  in Table 3. According to Table 3, the mean 
and standard deviation values of the orientation, position 
and velocity errors through the proposed algorithm are 
considerably decreased, compared to the conventional 
integration scheme. It can be clearly inferred from the 
results that using decomposed SINS error model in the 
estimation filter of the SINS/GPS system gathered with 
online compensation of misalignment errors, the navigation 
accuracy will be enhanced.

6- Conclusion
Due to the weak stand-alone accuracy as well as the poor 
run-to-run stability of the current generation of low-cost 
MEMS-grade IMUs, they are not applicable as a sole 
inertial navigation system. Moreover, the integration of such 
inertial unit into an aiding navigation system requires special 
approaches. In this  paper, we focused on developing an 
applied approach with an appropriate long-term performance 
for the integration of a low-cost SINS with the GPS system. 
A new integration scheme was proposed for low-cost SINS/
GPS systems based on decomposed SINS error model and 
in-run compensation of misalignment errors. On average, the 
proposed algorithm reduces the mean and standard deviation 
of the orientation error from 4.09 deg and 9.81 deg in the 
conventional integration algorithm to 1.28 deg and 4.74 
deg in the proposed one, respectively. Those of the position 
error decrease from 43.31 m and 41.93 m to 0.045 m and 
7.44 m, and the velocity error from 2.10 m/s and 5.816 m/s 
to 0.0302 m/s and 0.535 m/s. With considering the theoretical 
and practical superiorities of the proposed integration scheme 
over traditional and conventional algorithms, it is more 
suitable for implementation in low-cost SINS/GPS systems, 
especially in aerospace application.
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Figure 3. Estimation results of the attitude compared with the reference value of Vitans system
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Figure 4. Estimation result of the heading angle compared with the reference value of the GPS data
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Figure 5. Estimation result of the position components compared with the reference value of the GPS data
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Figure 6. Estimation result of the velocity components compared with the reference value of the GPS data
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Table 3. Mean values and standard deviation of the navigation error 

Navigation 
parameter

Conventional Integration Scheme Proposed Integration Scheme
Mean value of

estimation error
Standard deviation of 
estimation error (±1σ)

Mean value of 
estimation error

Standard deviation of 
estimation error (±1σ)

Roll (deg) 3.793 3.318 –0.3921 1.932
Pitch (deg) 5.897 3.745 1.394 1.493
Yaw (deg) –2.58 22.38 –2.052 10.8

Latitude (m) –1.756 14.96 0.04387 9.593
Longitude (m) 1.865 18.68 –0.01043 11.25

Height (m) 126.3 92.16 0.07999 1.481
V-north (m/s) –0.7814 6.371 –0.01439 0.6191
V-east (m/s) 0.6576 6.675 –0.01499 0.6407

V-down (m/s) –4.873 4.402 –0.06121 0.4043
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