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1- Introduction
Large-scale interconnected systems are applied in numerous 
fields, including electrical power systems, chemical reactors, 
economic systems and computer communication networks. 
In recent decades, scientific researchers have focused on 
the decentralized control of large-scale systems and many 
results have been obtained  [1]. The information exchange 
among subsystems of large-scale interconnected systems 
through communication networks unavoidably causes time 
delays. Thus, investigation of decentralized control problems 
of nonlinear interconnected systems with time delays is of 
high importance [2]. It should be noted that evaluating a time 
delay system is complex because of infinite dimension [3]. 
It has been reported that MRAC is an effective method for 
controlling systems with uncertainties and delays (see e.g. [4, 
8, 16]).
In many practical control problems, the parameters and 
the dynamics of the original system are unknown, but 
the upper bounds may be unknown or partially known. 
Therefore, adaptive schemes must be adopted to update the 
partially known bounds of uncertainty for uncertain large-
scale systems that are dynamically interconnected and 
suffer from time delays. In [5], the plant model with linear 
interconnections was considered where the nonlinear local 
inputs are bounded with unknown bounds, and then an 
adaptive controller was designed for the model. In [6], the 
plant includes uncertain delayed nonlinear interconnections 
bounded by a known function, and  there is, therefore, no 
adaptation law. Decentralized adaptive controllers have been 
applied to uncertain large scale time-delay interconnected 
systems [7, 19]. The nonlinear interconnection terms are 
generally assumed to be bounded by the linear functions of 
the norm of the states [8]. It is notable that in some recent 
works, the nonlinear interconnection terms are assumed to be 
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bounded to the related states by a higher-order polynomial 
[9]. It has been found that so many researchers have focused 
on adaptive control of large scale systems [4, 7, 8, 18], but 
the key issue of input delay which is important in practical 
applications has not been investigated. 
For a linear system with pure input delay, Smith predictor 
is introduced in [10]. However, if the open-loop system is 
unstable, the Smith predictor may fail to stabilize the overall 
system. The limitation on the open-loop stability required by 
the Smith predictor in the input delay compensation can be 
removed by the use of a new approach called the predictor 
feedback [11]. The idea behind this approach is to apply the 
future state which can be estimated from the current state 
and the past control signals, in order to compensate for the 
input delay. A good feature of the mentioned method is that 
the closed-loop system has only a finite number of zeroes. 
Hence, this method is also known as the finite spectrum 
assignment [11]. Linear systems with both input and state 
delays have been investigated, and a sliding mode control 
scheme to achieve stabilization has been presented in [12]. A 
finite dimensional feedback control law that is truncated from 
the traditional predictor feedback proposed in [13], based on 
the low gain feedback structure [14]. To tackle the problems 
of implementation of predictor feedback controllers for input 
delayed systems, truncated predictor feedback method was 
introduced for systems with delays in their input and states 
[15]. Also, Smith predictor method is applied to systems with 
both state and input delays in [16]. For the delay compensation, 
two auxiliary dynamic adaptive filters with adjustable gains 
were included in the adaptive controller part. However, due 
to existence of these filters, the tracking error could not be 
minimized. The nested predictor is another method which has 
been presented for state and input delays compensation [17] 
for system stabilizing problems. The large scale systems with 
delay in interconnection terms were investigated in [8] with 
no input delay. Also, the control law proposed in [8] is very 
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complex and not applicable to practical systems. In [19], the 
interconnected system without any delay in inputs and states 
was considered.
In this paper, a decentralized MRAC is designed for a large-
scale interconnected system subject to time-varying input 
and state delays in terms of a nonlinear interconnection. The 
controller is designed in two steps. In the first step, a simple 
and practical method is applied to predict the future states 
for compensation of input delays. For the prediction of the 
periodic characteristics of the reference model states are used. 
In the next step, by assuming that the state x(t+R) is predicted, 
the adaptive controller will be designed. Also, it was assumed 
that the time varying delays are any non- negative continuous 
and bounded functions. It is not necessary to have their 
derivatives being less than one, and, moreover, the nonlinear 
interconnection terms, which also include time-varying 
delays, are bounded with unknown non- negative nonlinear 
functions that not requirement to be known for the design.
The paper is organized as follows. In section 2, problem 
formulation and assumptions are introduced. The controller 
design and system stability proof are given in section 3. 
Simulation results of a chemical reactor system and a 
numerical example are given in section 4. The final section 
concludes the paper.

2- Problem formulation and assumptions
Consider a class of large scale systems composed of N 
interconnected subsystems with delays in states and inputs, 
described by the following equations:

( )
1

: ( ) ( ) ( ) ( )

                  ( ( )), ( )

i i i i di i i i i i
N

i ij j ij ij
j

S x t A x t A x t d B u t R

B x t h t t h tξ
=

= + − + −

+ − −∑



               (1)

where ∈ℜ in
ix  and ∈ℜ im

iu represent the state and control 
vectors of the i-th subsystem, respectively; Ai, i i

i

n n
dA ×∈ℜ  

and ×∈ℜ i in m
iB  are known as constant matrices, id  and Ri 

indicate constant delays, and ( )( ( )), ( )ij j ij ijx t h t t h tξ − −  
are uncertain interconnections, which represent the 
interconnections between the present and delayed states of 
systems Si and Sj , and hij(t) denote the differentiable and 
bounded time varying delay that satisfy
0 ( ) .ij ij ijf h t h≤ ≤ ≤ < ∞                                                   (2)

where ijf  and ijh  are positive constants. In the control 
literature [8, 9], it is generally assumed that hij(t) are positive 
and their derivatives are less than one. In this paper, we 
eliminate the differentiability condition. Hence, let hij(t) be  
positive continuous  bounded  functions which do not require 
to be known. The initial conditions are

[ ]0 0( ) ( ), , , 1, 2,..., .i i ix t t t t t i Nτ= Ξ ∈ − =

where { }max ,i ij ih dτ =  and ( )i tΞ are continuous functions.
The stable non- delayed reference model is defined by the 
differential equation as

( ) ( ) ( )mi mi mi mi ix t A x t B D t= +                                                (3)

where ∈ℜ in
mix  is the state vector, Di(t) is periodic and the 

piecewise continuous reference input to the i-th reference 
model. Ami and Bmi are known matrices.
To system (1) and model reference system (3), the following 
assumptions are given.

Assumption 1. There is the positive definite matrix Pi that 
satisfy the following equations 

, 1, 2,..., ,T
mi i i mi iA P P A Q i N+ = −       =                                    (4)

where Qi are positive definite matrices.
Assumption 2. There are the constant vectors ,i in n

i iz m∈ℜ ∈ℜ
,i in n

i iz m∈ℜ ∈ℜand a non-zero scalar riθ  that satisfy the following 
equations,

, 0,i mi i i di i i mi i riA A B z A B m B B θ− = + = = .

Assumption3. The nonlinear interconnection term (.)ijξ  
satisfies the following inequality 

( ) ( ) ( )*( ( )), ( ) ( ( )), ( )
T

ij j ij ij ij ij j ij ijx t h t t h t x t h t t h tξ θ ρ− − ≤ − −     (5)

where

1 2(.) (.) (.) ... (.)
j

T

ij ij ij ijlρ ρ ρ ρ =  
and

* * * *
1 2(.) (.) ... (.)

j

T

ij ij ij ijlθ θ θ θ =  
are the upper bound nonlinear function and an unknown 
constant vector, respectively. It is assumed that (.) 0jikρ >  
for 1, 2,..., ,jk l =  and these functions are continuous and 
uniformly bounded with respect to the state xj and the time 
t [19].

Assumption 4. All subsystems are stable.
Remark 1. Assumption 1 will be always satisfied if the pair 

{Ami, Bi} is stable and controllable. The so-called matching 
condition widely employed in the strenuous filtering and 
controlling problems satisfy Assumption 2 (see [9, 16]).

Remark 2. The interconnection terms are generally 
considered to be linear or the states are bounded by linear 
norms in the literature. In some works, the nonlinear 
interconnection terms are assumed to be bounded by a 
higher-order polynomial of states variables [9]. Here we 
assume that the interconnection term is bounded by a function 
that is described in Assumption 3. Moreover, the proposed 
decentralized control schemes are completely independent of 
the function ρij(·) that is not required to be known. Let

{ }2* 1 *

1

1 , 1, 2,...,
2

N

i i ij ij
j

i Nϕ η ε θ−

=

= ∈∑                              (6)

where iη  and ijε  are positive constants, and ijε is not 
necessarily known. It is clear from Assumption 3 that *

iϕ is 
an unknown positive constant.

3- Controller Design
In this section, first, a simple and practical method based on 
periodic characteristics of the reference model is introduced 
to predict the future states and to compensate the input delays. 
Then, by using the state x(t+R), a decentralized adaptive 
feedback controller is designed. However, this method can be 
used only when the reference input is periodic and continuous 
and subsystems are stable.

3- 1- Calculation of the future states x(t+R)
By  definition,  periodic signal is as follows:

( ) ( ) ( )x t x t T x t Tβ= + = +                                                  (7)
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where β  is a positive integer. Let
T R bβ = +                                                                             (8)

where b≥0 and 1β =  if T≥R, and 1β > , otherwise.
Thus, by a time delay, signal x(t+R) can be produced. By 
using (7) and (8), we will have

( ) ( ) ( )x t x t T x t R bβ= + = + +                                             (9)
and then

( ) ( )x t b x t R− = +                                                                 (10)
This relation shows that using the periodicity property,  
time delay can be used instead of prediction. This simple 
and practical feature can be applied to reduce the effect of 
interconnection term in the design MRAC for the large scale 
system.

3- 2- Model reference adaptive controller design
A decentralized adaptive feedback controller is designed for 
system (1) which satisfies the above Assumptions. Our goal 
is to ensure that all the closed loop signals remain bounded 
and the tracking error becomes small enough.  The tracking 
error is defined as 

( ) ( ) ( )= −i i mie t x t x t                       (11)
The error’s dynamics is obtained as

                                                                                             (12)
( )

1

( ) ( ) ( ) ( )

  ( ( )), ( ) ( ) ( )

i i i di i i i i i
N

i ij j ij ij mi mi mi i
j

e t A x t A x t d B u t R

B x t h t t h t A x t B D tξ
=

= + − + − +

− − − −∑



The main results are presented in the following theorem.
Theorem 1. Consider system (1), let the decentralized 

adaptive feedback controller be designed as

1 2( ) ( ) ( )i i iu t u t u t= +                                                           (13)
where

1( ) ( ) ( ) ( ),i i i i ri i i i i i iu t z x t R D t R m x t R dθ= − + + + + + −   (14)

2
1 ˆ( ) ( ) ( )
2

T
i i i i mi i i iu t t R B P e t Rη ϕ= − + +                          (15)

and iη  are positive constants. 
If ˆiϕ  are the estimates of the unknown *

iϕ  and are obtained 
by (16), then

2ˆ ( ) ˆ( ) ( ) .Ti i
i i i i i mi i i i

d t R t R B P e t R
dt

ϕ
γ σ ϕ η γ

+
= − + + +     (16)

If we define *ˆ( ) ( )i i i i it R t Rϕ ϕ ϕ+ = + − , (16) can be written as

2 *

( )
( )

    + ( )

i i
i i i

T
i i mi i i i i i i

d t R
t R

dt

B P e t R

ϕ
γ σ ϕ

η γ γ σ ϕ

+
= − + +

+ −





					                         (17)

where iγ  and iσ  are any given positive constants, and 
0ˆ ( )i tϕ  is finite. 

Moreover, let
( ) ( ) ( ),i i i i mi ie t R x t R x t R+ = + − +                                    (18)

where xi(t+Ri) can be obtained by applying time delay to 
periodic state xi(t), and ( )mi ix t R+  can be obtained by 
applying the input ( )i iD t R+  to (3). Then, the tracking error 
converges uniformly exponentially towards a ball, and the 
large scale system is stable.

Proof. Define the following Lyapunov function as:

					                         (19)

{ }

1 21( ( ), ( )) ( ) ( ) ( ) ,
2

                                           1, 2,..., .

T
i i i ri i i i i iV e t t e t P e t t

i N

ϕ θ γ ϕ−= +

=

 

where matrices Pi satisfying (4) are positive definite and 
iγ  are positive constants. It is  proved that the tracking 

error ei(t) converges uniformly exponentially towards a ball 
which is as small as desired in the presence of the nonlinear  
interconnected term.
Equation (12) can be written as

( )
1

( ) ( ) ( ) ( ) ( ) ( )

         ( ) ( ( )), ( ) .

i mi i i mi i di i i mi i
N

i i i i ij j ij ij
j

e t A e t A A x t A x t d B D t

B u t R B x t h t t h tξ
=

= + − + − −

+ − + − −∑



 (20)

By Assumption 2 and equation (13), (20) can be rewritten as

						            (21)( )

( )
1 2

1

( ) ( ) ( ) ( )
          ( ) ( ) ( )

          ( ( )), ( ) ,

i mi i i i i i i i i

mi i i i i i i

N

i ij j ij ij
j

e t A e t B z x t B m x t d
B D t B u t R u t R

B x t h t t h tξ
=

= + − − −

− + − + − +

+ − −∑



and after inserting (14) in (21), we have

( )
2

1

( ) ( ) ( )

           + ( ( )), ( ) .

i mi i i i i
N

i ij j ij ij
j

e t A e t B u t R

B x t h t t h tξ
=

= + − +

− −∑



                                (22)

By taking the time derivative of iV (.) , and using (22) and 
(15), we have

( )

( )
1

2 1

( ( ), ( ))
( ) ( )

        + 2 ( ) ( ( )), ( )

( )ˆ       ( ) ( ) ( ) .

T Ti i i
ri i mi i i mi i

N
T

i i mi ij j ij ij
j

T i
i i mi i i i i

dV e t t
e t A P P A e t

dt

e t PB x t h t t h t

d t
t B P e t t

dt

ϕ
θ

ξ

ϕ
η ϕ γ ϕ

=

−

= + +

− −

− +

∑







              (23)

By using (4) and (5), above equation can be written for any 
t≥t0,

( ) ( )

2
min

*

1

2 1

( ( ), ( ))
( ) ( )

   +2 ( ) ( ( )), ( )

( )ˆ   ( ) ( ) ( )

i i i
ri i i

N TT
mi i i ij ij j ij ij

j

T i
i i mi i i i i

dV e t t
Q e t

dt

B Pe t x t h t t h t

d t
t B P e t t

dt

ϕ
θ λ

θ ρ

ϕ
η ϕ γ ϕ

=

−

≤ − +

− −

− +

∑







           (24)

According to [19] and the Lyapunov stability theory i.e. for 
each positive constant 0ε >

12 , ,T T T nX Y X X Y Y X Y Rε ε −≤ + ∀ ∈                           (25)
From (24) and (25) and the definition of the parameter *

iϕ  in 
(6), we have for any t≥t0,

						           (26)( )

2
min

2
21 *

1

2 1

( ( ), ( ))
( ) ( )

        + ( ( )), ( ) ( )

( )ˆ        ( ) ( ) ( )

i i i
ri i i

N
T

j ij j ij ij i i mi i i
j

T i
i i mi i i i i

dV e t t
Q e t

dt

x t h t t h t B P e t

d t
t B P e t t

dt

ϕ
θ λ

ε ρ η ϕ

ϕ
η ϕ γ ϕ

−

=

−

≤ − +

− − +

− +

∑







where jε  , { }1,2,...,j N∈  are positive constant values. 
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Since *ˆ( ) ( )i i it tϕ ϕ ϕ= − , it holds that

                                                                                          (27)

( )

2
min

2
1 2 *

1

( ( ), ( ))
( ) ( )

( ( )), ( ) ( ) ( )

i i i
ri i i

N

j ij j ij ij i i i i i
j

dV e t t
Q e t

dt

x t h t t h t t t

ϕ
θ λ

ε ρ σ ϕ σ ϕ ϕ−

=

≤ − +

− − − −∑



 

If we use the inequality

( )22 * 2 *1 1( ) ( ) ( )
2 2i i i i i i i i it t tσ ϕ σ ϕ ϕ σ ϕ σ ϕ− − ≤ − +   ,          (28)

one can say that 

						           (29)
( ) ( )

2
min

2
21 2 *

1

( ( ), ( ))
( ) ( )

1 1   + ( ( )), ( ) ( )
2 2

i i i
ri i i

N

j ij j ij ij i i i i
j

dV e t t
Q e t

dt

x t h t t h t t

ϕ
θ λ

ε ρ σ ϕ σ ϕ−

=

≤ − +

− − − +∑





Regardless of the negative terms, by using (19) and (29) for 
any t≥t0, it can be written as

						            (30)

( ) ( )

min

2
21 *

1

( ( ), ( ))
( ( ), ( ))

1   ( ( )), ( )
2

i i i
i i i

N

j ij j ij ij i i
j

dV e t t
V e t t

dt

x t h t t h t

ϕ
µ ϕ

ε ρ σ ϕ−

=

≤ −

+ − − +∑





where

{ }1
min min maxmin ( ) ( ),i i i i iQ Pµ λ λ σ γ−= 		        (31)

Let ( ) ( ( ), ( ))i i iV t V e t tϕ=  , by the definition of 
( ( ), ( ))i i iV e t tϕ  given by (19) , following [19], and using 

(31), we have for any t≥t0,

						          (32)

( )

( )( )

min 0

min

0

2 ( )1
min 0

21 1 *
min min

2( )1 1
min

1

( ) ( ( )) ( )

1( ( ))
2

( ( )) ( ( )), ( )

i

i

t t
i ri i i

ri i i i i

N t t
ri i ij ij i ij ijt

j

e t P e V t

P

P e x h h d

µ

µ τ

θ λ

θ λ µ σ ϕ

θ λ ε ρ τ τ τ τ τ

− −−

− −

− −− −

=

≤ +

 +  
 

 + − − 
 ∑ ∫

where ijε , { }1,2,...,j N∈  are positive constants. Thus, the 
following inequality can be written as

( ) 1 1
min

1 min

( )
1

i

N
ri i ij

j

Pθ λ ε
µ

− −

=

<∑ 				          (33)

Now, according to [19], for any min0 i iδ µ≤ ≤ , the following 
continuous function is defined as

( ) 1 1
min

1 min

( )
( ) i ij

N
hri i ij

i
j i i

P
k e δθ λ ε

δ
µ δ

− −

=

=
−∑ 			        (34)

It is obvious from (33) that k(0)<1. Therefore, there are 
a 0 0iδ >  that the inequality 0 min0 i iδ µ< <  holds and 

0( ) 1ik δ <  such that

0 0( ) 1i ik k δ= <                                                                 (35)

Now, multiplying both sides of (32) by 0 0( )i t te δ − , we have for 
any t≥t0,

( )

( )( ) ( ) ( )( )

0 0

0 0

0 0 0min 0

0

2 ( ) 1
min 0

2 ( )1 1 *
min min

2( ) ( ( ) )( )( )1 1
min

( ) ( ( )) ( )

1     + ( ( ))
2

    ( ( )) ( ( )), ( )

i

i

i ij i iji i

t t
i ri i i

t t
ri i i i i

t h h tt
ri i ij ij j ij ijt

j

e t e P V t

P e

P e e x h h e d

δ

δ

δ τ δ τ τµ δ τ

θ λ

θ λ µ σ ϕ

θ λ ε ρ τ τ τ τ τ

− −

−− −

− −− − −− −

=

≤ +

 
 
 

 + − − 
 ∫

1

N

∑     

   (36)

                

( )

( )( ) ( ) ( )( )

0 0

0 0

0 0 0min 0

0

2 ( ) 1
min 0

2 ( )1 1 *
min min

2( ) ( ( ) )( )( )1 1
min

( ) ( ( )) ( )

1     + ( ( ))
2

    ( ( )) ( ( )), ( )

i

i

i ij i iji i

t t
i ri i i

t t
ri i i i i

t h h tt
ri i ij ij j ij ijt

j

e t e P V t

P e

P e e x h h e d

δ

δ

δ τ δ τ τµ δ τ

θ λ

θ λ µ σ ϕ

θ λ ε ρ τ τ τ τ τ

− −

−− −

− −− − −− −

=

≤ +

 
 
 

 + − − 
 ∫

1

N

∑

For any t≥t0, let

( )0 0

0

2 ( )
0

,
( ) max ( ) i

ij

t
i i

t h t
Y t e e δ ζ

ζ
ζ −

 ∈ − 

=                                   (37)

and

( )0 0

0

2 ( )

,
( ) max ( ( ), ) i

ij

t
ij ij j

t h t
S t x e δ ζ

ζ
ρ ζ ζ −

 ∈ − 

′ =                      (38)

Then, it can be obtained from (36) that for any ,t R +∈

( )

( )

00 0

0 0

1 1
2 min( ) 1

min 0
1 min 0

2 ( )1 1 *
min min

( )
( ) ( ( )) ( ) ( )

1( ( ))
2

i iji

i

N
hri i ijt t

i ri i i ij
j i i

t t
ri i i i i

P
e t e P V t e S t

P e

δδ

δ

θ λ ε
θ λ

µ δ

θ λ µ σ ϕ

− −
− −

=

−− −

′≤ +
−

 +  
 

∑

						           (39)

It is clear from (37) and (38) that ( )ijS t′  are non-decreasing 
functions. The right–hand side of the inequality (39) is also 
non-decreasing. Thus, using (39) and Y0i(t) in (37), we have:

( )

( )

0 0

0

2 ( )1 1 1 *
0 min 0 min min

1 1
min

1 min 0

1( ) ( ( )) ( ) ( ( ))
2

( )
( )

i

i ij

t t
i ri i i ri i i i i

N
hri i ij

ij
j i i

Y t P V t P e

P
e S t

δ

δ

θ λ θ λ µ σ ϕ

θ λ ε
µ δ

−− − −

− −

=

 ≤ +  
 

′+
−∑						           (40)

If we take

{ }0( ) max ( ), ( ) , , 1, 2,..., , 0i i ijS t Y t S t i j N t′ ′= = ≥           (41)

and using (34) and (35), the equation (40) is given by the 
following inequality,

( ) 0 0

1
0 min 0 0

2 ( )1 1 *
min min

( ) ( ( )) ( ) ( )        
1        ( ( )) .
2

i

i ri i i i i

t t
ri i i i i

Y t P V t d S t

P eδ

θ λ

θ λ µ σ ϕ

−

−− −

′≤ + +

 +  
 

                   (42)

As Y0i(t) and S’i(t) are non-decreasing functions and ijε  are 
positive, then as in [19],

*
0 0( ) ( )i i i id S t Y tυ′ ≤                                                            (43)

where * 1iυ <  is any given positive constant. Moreover, for 
the designer, it is not necessary to choose or know ijε  (see 
Remark 3).
By inserting (43) into (42), we have

( ) 0 0

1 *
0 min 0 0

2 ( )1 1 *
min min

( ) ( ( )) ( ) ( )
1         +( ( )) .
2

i

i ri i i i i

t t
ri i i i i

Y t P V t Y t

P eδ

θ λ υ

θ λ µ σ ϕ

−

−− −

≤ + +

 
 
 

                 (44)

Then,

( ) 0 0

1
min

0 0*

1 1
2 ( )*min min

*

( ( ))
( ) ( )

1

( ( )) 1        +
21

i

ri i
i i

i

t tri i i
i i

i

P
Y t V t

P
eδ

θ λ
υ

θ λ µ
σ ϕ

υ

−

− −
−

≤ +
−

 
 −  

	       (45)
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By the definition of Y0i(t) in (37), we have
0 0

2 ( )
0( ) ( ) i t t

i ie t Y t e δ− −≤ 			                          (46)

Therefore,

( )

0 0

1
2 ( )min

0*

1 1
2*min min

*

( ( ))
( ) ( )

1

( ( )) 1           
21

i t tri i
i i

i

ri i i
i i

i

P
e t V t e

P

δθ λ
υ

θ λ µ
σ ϕ

υ

−
− −

− −

≤
−

 +  −  

		        (47)

and

[ )
0 0

0

1 1
( )min min

0 0* *
,

( ( )) ( ( ))
sup ( ) ( ).

1 1
i t tri i ri i

i i
t i i

P P
V t e V tδθ λ θ λ

υ υ

− −
− −

∈ ∞

 
≤ − − 

     (48)

The norm ( )ie t  in (47) is uniformly bounded, and it 
converges uniformly exponentially to 0( )iB c  where

( )
1 1

2*min min
0 0 *

( ( )) 1( ) ( ) .
21

ri i i
i i i i i i

i

P
B c e e t c

θ λ µ
σ ϕ

υ

− −   = ≤ =  −    
(49)

Because the estimated value ˆ ( )i tϕ  in (16) is uniformly 
bounded, the tracking error ( )ie t  is bounded, and the proof 
is complete.

Remark 3. Since the adaptive control law in (16) is 
independent of ijε , it is not necessary for the designer to 
know or choose these positive constants. (More details can 
be found in [19]).

4- Numerical Examples
In this section, to show the effectiveness of the proposed 
approach, a numerical example and a chemical reactor system 
are presented. 

Example 1. Consider a large-scale system with time-
varying state and input delays, the two subsystems of which 
are described as follows:

1 2

1 1 1 1 1 1

2
0.5 ( ( )) 0.6 ( ( ))

1
1

2 2 2 2 2 2

1 1 0 0 0
( ) ( ) ( ) ( )

2 3 2 3 1

0
       ( )

1

1 1 0 0 0
( ) ( ) ( ) ( )

3 3 2 3 1

       

j ij j ijx t h t x t h t
j

j

x t x t x t d u t R

t e

x t x t x t d u t R

ζ − + −

=

−     
= + − + −     − − − −     

  
+   

   
−     

= + − + −     − − − −     

∑





1 20.5 ( ( )) 0.6 ( ( ))
2

1

0
 + ( ) )

1
j ij j ij

N
x t h t x t h t

j
j

t eζ − + −

=

  
  

   
∑

                                                                                      (50)

where ( )ij tζ  are unknown that not requirement to be known 
for the design.
To design the adaptive controller, the reference model is 
selected as

1 1 1

2 2 2

1 1 0
( ) ( ) ( )

6 5 1

1 1 0
( ) ( ) ( )

7 5 1

m m

m m

x t x t D t

x t x t D t

−   
= +   − −   

−   
= +   − −   





                               (51)

where

1 2( ) 10sin , ( ) 10cos .
4 4

D t t D t tπ π
= =  

Therefore, by Theorem 1, the controllers are

[ ] [ ]1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

( ) 4 2 ( ) 2 3 ( )
1 ˆ       ( ) ( ) ( )
2

T
m

u t x t R x t d R

D t R t R B P e t Rη ϕ

= − − + + − +

+ + − + +                (52)

[ ] [ ]2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

( ) 4 2 ( ) 2 3 ( )
1 ˆ        ( ) ( ) ( )
2

T
m

u t x t R x t d R

D t R t R B P e t Rη ϕ

= − − + + − +

+ + − + +
            (53)

and the adaptive laws are
2ˆ ( ) ˆ( ) ( )Ti i

i i i i i mi i i i
d t R

t R B P e t R
dt

ϕ
γ σ ϕ η γ

+
= − + + +           (54)

with
( ) ( ) ( )i i i i mi ie t R x t R x t R+ = + − +                                   (55)

The future states ( )mi ix t R+  can be obtained by applying 
the input ( )i iD t R+  in (51). Also, the state ( )i ix t R+  can 
be predicted by the method introduced in section 3.1.
The parameter values of the controller are chosen as:

1 2 1 2

1 2

1 2

1, 3.4, 2, 5, 0.1,
( ) 0.2sin(3 ), ( ) 0.3sin(3 ), 10 ,

( ) 1 0.5sin( ), ( ) 1 0.4sin( ).

i i i

j j i

i i

d d R R
t t t t Q I

h t t h t t

η γ σ
ζ ζ

π π

= = = = = = =
= = =

= + = +

hi1(t) and hi2(t) are bounded continuous functions and their 
derivatives are not necessarily less than one. Also, in the 
controller design, it does not need to  be known. The initial 
conditions are

1 0
(0) , (0) .

1 0i mix x
−   

= =   
   

Simulation results are shown below. Figure 1 shows the plant 
and reference model’s states xi(t) and xmi(t), and Figure 2 
shows the errors ei(t) and the control signal. 

Example 2. We consider a chemical reactor recycle 
system that was presented in [8] but the input delay is added 
to it. This example is a large scale model composed of two 
subsystems as:

						           (56)

0.5 1 0 0.5 0.5 0
0 0.5 1 0 0.5 0.5 ( )
0 0 0.5 0.5 0.5 0.25

0 0
0 ( ) 0 ( ),               1, 2.
1 1

i i i i

i i i

x x x t d

u t R f t i

− − −   
   = − + − − −   
   − −   

   
   + − + =   
      



where the uncertain nonlinear functions are chosen as

						           (57)

1 1 1 2 11
2

1 1 11 2 12 13 1

2 2 2 1 21
2

2 2 21 1 22 23 2

( ) ( ) ( ( ))
           ( ( )) ( ( )) ( )

( ) ( ) ( ( ))
           ( ( )) ( ( )) ( )

T

T

T

T

f t x t x t h t
x t h t x t h t x t d

f t x t x t h t
x t h t x t h t x t d

µ
µ
µ
µ

= − +
− − − −

= − +
− − − −

that 1µ  and 2µ  are unknown parameters. To design the 
adaptive controller, the reference model is selected as:
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Figure 1. Time responses of states and model references 

Figure 2. Error and control signals
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0.5 1 0 0
0 0.5 1 0 ( ), 1, 2,
0 0 1

mi mi i

i

x x D t i
a

−   
   = − + =   
   −   

          (58)

that 1 23, 2a a= =  and

1 2( ) 0.2sin , ( ) 0.2cos .
2 2

D t t D t t
π π

= =

The interconnected term in (57) can be bounded by a higher-
order polynomial, however using the method presented in 
this paper, the interconnected term is only assumed bounded 
with an unknown function. Therefore, by theorem 1, the 
controllers are

                                                                                           (59)

[ ]
[ ]

1 1 1

1 1 1

1 1 1 1 1 1 1 1 1

( ) 0 0 1.5 ( )

           + 0.5 0.5 0.25 ( )
1 ˆ          ( ) ( ) ( )
2

T
m

u t x t R

x t R d

D t R t R B P e t Rηψ

= + +

− − + −

′+ + − + +

                                                                                             (60)
[ ]

[ ]
2 2 2

2 2 2

2 2 2 2 2 2 2 2 2

( ) 0 0 2.5 ( )

           + 0.5 0.5 0.25 ( )
1 ˆ( ) ( ) ( )
2

T
m

u t x t R

x t R d

D t R t R B P e t Rη ψ

= + +

− − + −

′+ + − + +

As mentioned, for the prediction of the periodic characteristics 
of the reference model states are used. The system received 
reference input by the control law (14) and, therefore, the 
states of system are periodic, thus,

( ) ( 4) ( )x t T x t x t+ = + =                                           (61)

Using (10), above equation can be written as 

( ) ( 0.4) ( 3.6)x t R x t x t+ = + = −                            (62)

Also, adaptive law and tracing error are similar in (54) and 
(55), respectively. The parameter values of the controller are 

chosen as:
( )1 2 0.3, 0.4, 0.5, ( ) 0.2 1 sin ,

10 , 7, 4, 0.1.
i i ij

i i i i

d d R h t t
Q I

µ

γ η σ

= = = = = +

= = = =

The initial conditions are

1 2

1 0.8
(0) , (0)0 0

1 0.8
x x

   
   = =   
      

With the designed controller, Figure 3 shows the plant and 
reference model states, i.e. xi(t) and xmi(t), respectively, and 
Figures 4 and 5 show the errors ei(t) and the control signal. 
with the designed controllers, the states of the closed loop 
system are illustrated in the results. it can be seen for the 
system (50) and (56) and with both state and input delay and 
nonlinear interconnected terms with time varying delays, the 
tracking error converges uniformly exponentially to a ball.

5- Conclusion
In this research, the MRAC problem was investigated 
for a large scale system with both state and input delay 
and nonlinear interconnected terms. Delay in the input is 
compensated by a simple and practical method based on 
the periodic characteristics of the reference model. Also, it 
is considered that the upper bounds of the uncertainties in 
the interconnection terms are unknown. Time varying delays 
in interconnection term are non-negative continuous and 
bounded functions whose  derivatives do not necessarily need 
to  be less than one. Based on Lyapunov stability theory, the 
closed-loop system error can be guaranteed to be uniformly 
exponentially convergent to a ball. The validity of the 
main results is verified through a numerical example and a 
chemical reactor system. Hence, the proposed methodology 
can  be applied to a class of large-scale systems that are 
interconnected with time delays.
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Figure 3. Time responses of states and model references
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