In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/moments acting on the object by the robots, using different Jacobian matrices, are derived. The proposed control method is a position control approach; therefore, it does not need the complexity of measurement of forces and moments at the contact points. Simulation results are provided to illustrate the performance of the control algorithm. The robustness of the proposed control scheme is verified in the presence of disturbance and uncertainty.